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a b s t r a c t

In this paper, we propose a new variant of particle swarm optimization (PSO), namely PSO with
increasing topology connectivity (PSO-ITC), to solve unconstrained single-objective optimization pro-
blems with continuous search space. Specifically, an ITC module is developed to achieve better control of
exploration/exploitation searches by linearly increasing the particle's topology connectivity with time as
well as performing the shuffling mechanism. Furthermore, we introduce a new learning framework that
consists of a new velocity update mechanism and a new neighborhood search operator that aims to
enhance the algorithm's searching performance. The proposed PSO-ITC is extensively evaluated across 20
benchmark functions with various features as well as two engineering design problems. Simulation
results reveal that the performance of the PSO-ITC is superior to nine other PSO variants and six cutting-
edge metaheuristic search algorithms.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Particle swarm optimization (PSO) is a metaheuristic search
(MS) algorithm proposed by Kennedy and Eberhart (1995). It is
inspired by the collaborative behavior of a school of fish or a flock
of birds in search for food (Banks et al., 2007; del Valle et al., 2008;
Eberhart and Shi, 2001; Kennedy and Eberhart, 1995). In PSO, each
individual (i.e., particle) represents the potential solution to the
optimization problem, whereas the location of the food source
represents the global optimum solution. During the searching
process, all these particles share information and collaborate with
each other. This collaboration enables the population to move
toward the food source from different directions, thereby leading
to swarm convergence (Banks et al., 2007; Eberhart and Shi, 2001).
PSO is characterized by conceptual simplicity and high efficiency.
Thus, it has received increasing attention and has been widely
applied to solve a large class of engineering design problems such
as power system design (AlRashidi and El-Hawary, 2009; Chen
et al., 2007; del Valle et al., 2008; dos Santos Coelho and Mariani,
2008; Neyestani et al., 2010; Wang et al., 2013), trajectory planning
(Alonso Zotes and Santos Peñas, 2012; Fu et al., 2012; Marinakis
et al., 2010), artificial neural network (ANN) training (Gudise and
Venayagamoorthy, 2003; Mirjalili et al., 2012; Yaghini et al., 2013),
data mining (Holden and Freitas, 2008; Özbakır and Delice, 2011;
Sarath and Ravi; Wang et al., 2007), data clustering (Kiranyaz et al.,

2010; Shih, 2006; Sun et al., 2012; Van Der Merwe and
Engelbrecht, 2003; Yang et al., 2009), parameter estimation and
system identification (Liu et al., 2008; Modares et al., 2010;
Sakthivel et al., 2010), and many other engineering problems
(Banks et al., 2008; Huang et al., 2009; Lin et al., 2009; Paoli
et al., 2009; Sharma et al., 2009; Wachowiak et al., 2004).

However, despite its competitive performance, PSO possesses
certain undesirable dynamic characteristics that restrict its search-
ing capability. Previous studies (van den Bergh and Engelbrecht,
2004) revealed that PSO is beset by a premature convergence
issue, as the particles tend to be trapped in the local optima
solution, which is attributed to the rapid convergence of PSO
and the loss of swarm diversity. Another major concern in
the application of PSO is the algorithm's capability in balancing
exploration/exploitation searches. Excessive exploration or exploi-
tation searches are undesirable, as the former prevents swarm
convergence, whereas the latter has a high tendency to cause
premature swarm convergence (Shi and Eberhart, 1998).

Although various approaches (Banks et al., 2007, 2008; del
Valle et al., 2008) have been reported to alleviate the drawbacks of
PSO, little effort has been made to address the issue of balancing
the PSO's exploration/exploitation searches by varying the parti-
cle's topology connectivity with time. Furthermore, the most
existing PSO variants do not provide an alternative strategy to
the particles when they fail to improve their fitness during the
searching process. This lack of an alternative strategy inevitably
limits the algorithm's performance. Motivated by these facts, we
propose a new PSO variant, namely the PSO with increasing
topology connectivity (PSO-ITC). The key benefit of the PSO-ITC
is the synergy of a novel ITC module into the PSO, in offering better
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control of the PSO's exploration/exploitation searches. Specifically,
the ITC module linearly increases the topology connectivity of each
particle with time as the lower topology connectivity encourages
the particle to perform exploration, whereas the higher topology
connectivity favors exploitation (Kennedy, 1999; Kennedy and
Mendes, 2002). A shuffling mechanism is also introduced into
the ITC module to prevent swarm stagnation. We also develop a
learning framework that consists of a new velocity update
mechanism and a new neighborhood search (NS) operator to
further enhance the searching performance of PSO-ITC. The NS
operator is triggered only if the PSO-ITC particle fails to improve
its personal best fitness when it is evolved through the new
velocity update mechanism.

The remainder of this paper is organized as follows: Section 2
briefly discusses some related works. Section 3 provides novel
insights into the workings of the proposed PSO-ITC. Section 4
presents the experimental setting and results. Section 5 concludes
the study.

2. Related works

For a more or less comprehensive survey, we briefly discuss the
mechanism of the basic PSO (BPSO), after which we review several
well-established PSO variants.

2.1. Basic PSO

For a D-dimensional problem hyperspace, each BPSO particle i
represents a potential solution to a problem, and its current state
is associated with two vectors, namely the position vector Xi¼
[Xi1, Xi2,…,XiD] and the velocity vector Vi¼[Vi1, Vi2, …, ViD]. One
unique feature of BPSO that differentiates it from other metaheur-
istic search (MS) algorithms is the ability of particle i to memorize
the best position that it has ever achieved, that is, its personal best
experience Pi¼[Pi1, Pi2,…,PiD]. During the searching process, each
particle in the population stochastically adjusts its trajectory
according to its personal best experience Pi and to the group best
experience found by all the particles so far, Pg¼[Pg1, Pg2,…,PgD]
(Eberhart and Shi, 2001; Kennedy and Eberhart, 1995). Specifically,
for each particular dth dimension of particle i, its velocity
Vi,d (tþ1) and position Xi,d (tþ1) at (tþ1)th iteration of the
searching process are updated as follows:

Vi;dðtþ1Þ ¼ωVi;dðtÞþc1r1ðPi;dðtÞ�Xi;dðtÞÞþc2r2ðPg;dðtÞ�Xi;dðtÞÞ ð1Þ

Xi;dðtþ1Þ ¼ Xi;dðtÞþVi;dðtþ1Þ ð2Þ
where i¼1, 2,…,S is the particle's index; S is the population size; c1
and c2 are the acceleration coefficients that control the influences
of cognitive (i.e., Pi) and social (i.e., Pg) components, respectively;
r1 and r2 are two random numbers generated from a uniform
distribution with the range of [0, 1]; and ω is the inertia weight
used to balance the exploration/exploitation searches of particles
(Shi and Eberhart, 1998).

2.2. PSO variants and improvements

Various approaches have been proposed to improve the per-
formance of PSO, among which parameter adaptation strategy
has become one of the more promising. Clerc and Kennedy (2002)
incorporated a constriction factor χ into the PSO to address the
swarm explosion issue. Ratnaweera et al. (2004) developed a time-
varying acceleration coefficient (TVAC) strategy, where the c1
and c2 are dynamically changed with time to better regulate
the exploration/exploitation searches. To this end, two variants
of PSO-TVAC, namely the PSO-TVAC with mutation (MPSO-TVAC)

and the self-organizing hierarchical PSO-TVAC (HPSO-TVAC), have
been proposed. Zhan et al. (2009) developed an adaptive PSO
(APSO) capable of identifying the swarm's evolutionary states
through the proposed evolutionary state estimation (ESE) module.
The outputs of the ESE module are used to adaptively adjust the
particles’ω, c1, and c2. Leu and Yeh (2012) employed the gray
relational analysis in their gray PSO to tune the particles’ω, c1, and
c2. Based on the searching feedback status obtained from the
population manager, Hsieh et al. (2009) developed an efficient
population utilization strategy for PSO (EPUS-PSO) to adaptively
adjust the population size.

Population topology also plays a major role in PSO’s perfor-
mance as it decides the information flow rate of the best solution
within the swarm (Kennedy, 1999; Kennedy and Mendes, 2002).
Mendes et al. (2004) proposed a fully connected PSO (FIPSO) by
advocating that each particle’s movement is influenced by all its
topological neighbors. Kathrada (2009) combined the global and
the local version of PSO, and proposed a flexible PSO (FlexiPSO).
A simple heuristic is developed in the FlexiPSO to increase the
flexibility of the swarm to search across various types of fitness
landscape. Inspired by the social behavior of the clan, Carvalho and
Bastos-Filho (2008) proposed a clan PSO, where the population is
divided into several clans. Each clan first performs the search, and
the particle with the best fitness is selected as the clan leader.
A conference is then performed among the leaders to adjust
their position. Bastos-Filho et al. (2009) and Pontes et al. (2011)
further improved the clan PSO by hybridizing it with the migration
mechanism and APSO, respectively. To alleviate the deficiencies of
fixed neighborhoods, Liang and Suganthan (2005) proposed a
dynamic multi-swarm PSO (DMS-PSO) with a dynamically chan-
ging neighborhood structure. Montes de Oca et al. (2009) adopted
the concept of time-varying population topology into their Fran-
kenstein PSO (FPSO). Initially, the particles in FPSO are connected
with a fully connected topology. The topology is then decreased
over time and eventually reduced into the ring topology. Marinakis
and Marinaki (2013) proposed a PSO with an expanding neighbor-
hood topology (PSOENT) by hybridizing the PSO with the variable
neighborhood search strategy. In their approaches, the particle’s
neighborhood expands based on the quality of the produced
solutions. The PSOENT was applied to solve eight feature selection
problems and successfully achieved an overall average classifica-
tion accuracy of 92.48%.

Another area of research is the exploration of PSO’s learning
strategies. Liang et al. (2006) developed a comprehensive learning
PSO (CLPSO). Accordingly, each particle is allowed to learn either
from its Pi or from other particle’s historical best position in each
dimension. Tang et al. (2011) further improved the CLPSO by
introducing the feedback learning PSO with quadratic inertia
weight (FLPSO-QIW). Unlike the CLPSO, their FLPSO-QIW gener-
ates potential exemplars from the first 50% fittest particles. More-
over, the learning probability of FLPSO-QIW particles is assigned
according to the particle’s fitness instead of the particle’s index.
Inspired by the DMS-PSO and the CLPSO, Nasir et al. (2012)
proposed a dynamic neighborhood learning-based PSO (DNLPSO).
In their approach, the particle’s exemplar is selected from a
neighborhood, which is made dynamic in nature. Huang et al.
(2012) proposed an example-based learning PSO (ELPSO). Instead
of a single Pg particle, an example set of multiple global best
particles is employed to update the particle’s velocity in ELPSO.
Zhou et al. (2011) introduced the random position PSO (RPPSO),
where a random particle is used to guide the swarm if a randomly
generated number is smaller than the proposed probability PðΔf Þ.
Zhan et al. (2011) proposed the orthogonal learning PSO (OLPSO)
that employs the orthogonal experimental design (OED) (Hicks,
1993) to construct an effective exemplar to guide the search.
OLPSO with the local topology (OLPSO-L) reportedly outperforms
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its counterpart with the global topology (OLPSO-G). Another OED-
based PSO variant is the orthogonal PSO (OPSO) introduced by
Ho et al. (2008). Accordingly, an intelligent move mechanism is
designed to predict the particle’s next position. Numerical results
show that OPSO can find a better solution to the 12 selected
benchmark functions and one task assignment problem.

Mariani et al. (2012) combined the chaotic Zaslavskii map
(Zaslavsky, 1978) with the quantum PSO (QPSO) (Sun et al., 2004)
to solve heat exchanger optimization problems. Sun et al. (2012)
developed a new clustering scheme based on a QPSO variant, namely
the multi-elitist QPSO (MEQPSO). The MEQPSO-based clustering
algorithm was applied in the gene expression data analysis for
discovering the function of a gene. Yaghini et al. (2013) proposed a
hybrid improved opposition-based PSO and a backpropagation algo-
rithm with a momentum term to produce an efficient ANN training
algorithm. Accordingly, opposition-based learning and random per-
turbations help the algorithm to maintain the population diversity.
The simulation results revealed that the training time and the
accuracy of the proposed algorithm are superior to those of the
three other well-known ANN training algorithms. Sun et al. (2011)
explored the applicability of QPSO to combinatory optimization
problems. Combining the QPSO with the loop deletion operation
produced a modified QPSO that was used to solve the quality-of-
service (QoS) multicast routing problem. To address the vehicle
routing problem, Marinakis et al. (2010) introduced hybrid PSO
(HybPSO) by incorporating the multiple phase neighborhood
search-greedy randomized search procedure (MPNS-GRASP) algo-
rithm, the expanding neighborhood search strategy, and a path
relinking strategy into the PSO. Extensive experimental analyses
show that the HybPSO is very promising in solving very large-scale
vehicle routing problems within a short computational time.

To efficiently solve multi-objective (MO) problems, Mousa et al.
(2012) combined the PSO and the genetic algorithm to form a
hybrid MO evolutionary algorithm. More specifically, the proposed
method employs a local search scheme to explore less crowded
areas in the current archive to obtain more non-dominated
solutions. Wang et al. (2013) developed a novel multi-objective
PSO (MOPSO) variant, namely dynamic neighborhood small popu-
lation PSO (DNSPPSO), based on the regeneration and dynamic
neighborhood strategies. The former strategy improves the algo-
rithm’s convergence speed, whereas the latter converts MO
problems into single-objective (SO) ones by sorting and evalua-
ting the objectives one by one. DNSPPSO is successfully applied
as an intelligent dynamic reconfiguration strategy to prevent
power failure in an electric ship’s power system. Motivated by the
fact that the algorithm’s convergence characteristics towards
the Pareto-optima set is significantly dependent on the proper
selection of local guides, Sahoo et al. (2011) proposed a heuristics-
based selection of guides in MOPSO (HSG-MOPSO). Accordingly,
the HSG-MOPSO consists of two types of local guides, namely non-
dominated and dominated guides. During optimization, a certain
number of PSO members follow their nearest non-dominated
guides, while the remaining ones are guided by the nearest
dominated solutions. Sahoo et al. (2012) employed the principles
of fuzzy Pareto-dominance into the MOPSO (FPD-MOPSO) to
efficiently discover and rank non-dominated solutions on the
Pareto-approximation front. The proposed strategy is capable of
simultaneously maintaining the quality and the diversity of the
solutions retained in the elite archive. Both HSG-MOPSO and FPD-
MOPSO are used as multi-objective planning algorithms for
electrical distribution systems. Wang and Singh (2009) proposed
an improved MOPSO to solve multi-area economic dispatch
problems by combining MOPSO with the synchronous particle
local search strategy (Liu et al., 2007). This hybridization strategy
can preserve distribution diversity and uniformity, and speed up
the search process. Omkar et al. (2012) developed a novel parallel

approach to vector evaluated PSO (VEPSO) (Parsopoulos and
Vrahatis, 2002) in solving the multi-objective design of composite
structures. Extensive simulations revealed that the parallel imple-
mentation of VEPSO outperforms the one with the serial
implementation.

3. PSO with increasing topology connectivity (PSO-ITC)

In this section, we describe in detail the ITC module employed
in the proposed PSO-ITC. Next, we present the methodologies
employed in our proposed learning framework. Finally, we provide
the complete framework of PSO-ITC.

3.1. ITC module

The ITC module is one of the key factors that determine PSO-
ITC’s performance by dynamically changing the particle’s topology
connectivity during the searching process. Specifically, the ITC
module aims to better control exploration/exploitation searches by
linearly increasing the particle’s topology connectivity with time
as well as performing the shuffling mechanism. The mechanism of
the ITC module is inspired by early studies performed as follows.
PSO with larger topology connectivity favors the simple problem,
whereas the smaller connectivity counterpart performs better in
complex problems (Kennedy, 1999; Kennedy and Mendes, 2002).
This finding implies that the former PSO variant is more exploi-
tative, whereas the latter is more explorative. Shi and Eberhart
(1998) advocated that PSO particles in the early stage of optimiza-
tion require higher diversity to wander around the full range of
the search space, thus emphasizing the exploration search. At the
latter stage of the search, fine-tuning of the solution becomes the
priority, and thus, the exploitation search is required.

The ITC module works as follows: initially, each particle in the
PSO-ITC is connected with one neighbor that is randomly selected
from the population. As the optimization process evolves, the ITC
module gradually increases the particle’s topology connectivity
until all particles are fully connected. Mathematically, each parti-
cle’s topology connectivity is linearly increased as follows:

TCi ¼ ⌊TCminþTCmax½ðk�1Þ=ðFEmax�1Þ�⌋ ð3Þ
where TCi is the current connectivity of particle i; TCmin and TCmax

represent the maximum and minimum connectivity, respectively,
where TCmin¼1 and TCmax¼S–1; k is the current fitness evalua-
tions (FEs) consumed by the algorithm; FEmax is the maximum FEs
allocated; and ⌊⌋ represents the floor operator.

Fig. 1. Possible topology connectivity of each particle when TC for all particles is
equal to 1.
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Each time the TCi of particle i is increased by ΔTCi, particle i
randomly selects ΔTCi new neighbors from the population. Unlike
the neighborhood structure shown in the previously proposed
DMS-PSO (Liang and Suganthan, 2005) and DNLPSO (Nasir et al.,
2012), the particles in our PSO-ITC are not connected in a
bidirectional manner. For example, in the case of TCi¼1, if particle
i has selected particle j as its neighbor, then particle j does not
necessarily select particle i as its neighbor as well. Instead, particle
j may select another particle, for example, particle k, as its
neighbor. Fig. 1 illustrates the aforementioned scenario.

Aside from linearly increasing the particle’s topology connectivity
with time, the ITC module also incorporates a shuffling mechanism to
alleviate swarm stagnation. As shown in Fig. 2, if particle i fails to
improve the fitness of the group best experience found by all the
particles so far (Pg), that is, f(Pg) for z successive FEs, the ITC module
reassigns new neighbors to particle i by randomly selecting TCi
members from the population. This mechanism provides the new
topological information for particle i, thereby allowing it to perform
the search in a new direction provided by the new neighborhood
members. We also perform perturbation on the Pg particle to help it
escape from the local optimum. Specifically, one dth dimension of the
Pg particle, that is, Pg,d, is randomly selected and perturbed as follows:

Pper
g;d ¼ r3Pg;dþð1�r3ÞðPx;d�Py;dÞ ð4Þ

where Pper
g;d is the perturbed Pg,d; r3 is a random number with the

range of [0, 1]; Px,d and Py,d are the personal best positions of the two
particles randomly selected from the population. The perturbed Pg
particle (Pper

g;d ) replaces the current Pg if the former has better (i.e.,
lower) fitness than the latter. Eq. (4) is in fact inspired by the social
learning strategy proposed by Montes de Oca et al. (2011). As shown
in Eq. (4), the Pper

g;d particle learns socially from a subset of more
experienced particles (i.e., Pg, Px, and Py particles), without incurring
the cost of acquiring that knowledge individually from scratch.
Consequently, the Pper

g;d particle produced is biased toward the best
particle. This approach lets the Pper

g;d particle jump to promising
regions of the search space instead of to inferior ones.

Fig. 3 illustrates the mechanism of the proposed ITC module. In
the initial stage, each particle in the population randomly selects
one population member as its neighbor. For example, particles
i and n select particles j and m as their neighbors, respectively.
After a certain number of FEs, the connectivity of all particles is
increased from one to two, and each particle of the population
randomly selects another population member as its neighbor.
For example, particle i selects particle k as its new neighbor when
its topology connectivity is increased to two. Thus, particle i’s
neighborhood, that is, a set of particles connected with particle i,
now consists of two members, namely particles j and k. Next,
particle i performs the shuffling mechanism as it fails to improve

Fig. 2. Shuffling mechanism is performed on particle iwhen it fails to improve Pg fitness form successive FEs. Note that the topology connectivity for other particles remains the same.

Fig. 3. Graphical illustration of the mechanism in ITC module.
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the global best fitness for z successive FEs. Specifically, particle
i gives up its original neighbors, that is, particles j and k, and
randomly selects particles l and n as its new neighbors. The new
neighbors (i.e., particles l and n) provide particle i a new searching
direction, thereby preventing the latter from stagnating in the
local optima. Both steps—(1) linearly increasing topology connec-
tivity and (2) shuffling mechanisms—are repeated until all parti-
cles in the population are fully connected.

Fig. 4 illustrates the implementation of the ITC module. As
shown in the figure, a variable fci is defined to record the number
of successive FEs where particle i fails to improve the f (Pg).
As shown in the main algorithm block (i.e., Fig. 9), the fci variable
is reset to zero if the global best particle’s fitness is successfully
improved. Otherwise, the value of fci is incrementally increased
by one. Also, the two exemplars that play major roles in evolving
particle i through our proposed learning framework (i.e., the cogni-
tive exemplar cexp,i and the social exemplar sexp,i) are updated. Both
cexp,i and sexp,i exemplars are generated by the Generate_Exemplars
procedure described in Section 3.2.1.

3.2. Proposed learning framework

In this section, we introduce the new learning framework
adopted by the proposed PSO-ITC. We first explain the methodol-
ogy employed to generate the cexp,i and sexp,i exemplars that are
essential in guiding particle i in the proposed learning framework.
Next, we provide a detailed description of the new velocity update
mechanism and the new NS operator employed in the PSO-ITC.

3.2.1. Derivation of the cognitive exemplar (cexp,i) and the social
exemplar (sexp,i)

From Eq. (1), we observe that the second component of (Pi,d–
Xi,d) acts as the cognitive component, whereas the third compo-
nent of (Pg,d–Xi,d) represents the social component. It is worth
mentioning that the fitness of the global best particle Pg is always

not worse (i.e. not higher) than the personal best position of
particle i, Pi.

Inspired by this observation, we propose to generate two
exemplars, the cexp,i and the sexp,i exemplars, from the neighbor-
hood of particle i (i.e., neighbori) to guide particle i in the searching
process. Specifically, we first sort the neighborhood members of
particle i, including particle i itself, according to their personal best
fitness. The fitter neighborhood members with their personal best
fitness ranked at the first quartile range (i.e., neighbor_upperi)
are used to generate the sexp,i exemplar, while the members in the
remaining three quartiles (i.e., neighbor_loweri) produce the cexp,i
exemplar. As the cexp,i exemplar is derived from three-fourth of the
neighbors with the worst fitness, it may have an inferior fitness to
particle i’s personal best fitness. Nevertheless, as explained in the
following subsection, using the individuals with worse fitness than
that of the particle itself makes sense, because they are used to
repel the particle. In addition, unlike the CLPSO (Liang et al., 2006)
and the DNLPSO (Nasir et al., 2012) that employed tournament
selection, we utilize roulette wheel selection to generate the cexp,i
and the sexp,i exemplars from neighbor_loweri and neighbor_upperi,
respectively. Specifically, each member k in the neighbor_loweri
and neighbor_upperi is assigned a weightage value, Wk

Wk ¼
fmax� f ðPkÞ
fmax� fmin

; 8kA ½1;K� ð5Þ

where fmax and fmin represent the maximum (i.e., worst) and the
minimum (i.e., best) personal best fitness values of the members
in neighbor_loweri or neighbor_upperi, respectively, and K repre-
sents the number of members in neighbor_loweri or neighbor_-
upperi. From Eq. (5), the neighborhood member k with a lower
fitness is assigned a larger Wk value, which implies that it has
a greater probability of being selected as the cexp,i or sexp,i
exemplar. To prevent the derivation of the cexp,i and sexp,i exem-
plars solely from the fittest members of the neighbor_loweri and
neighbor_upperi, respectively, we randomly select one dimension
dr of the cexp,i and sexp,i exemplars, cexp,i(dr) and sexp,i (dr). The

Fig. 4. ITC module of the PSO-ITC algorithm.
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former is replaced with the drth component of the Pi particle itself,
Pi (dr), whereas the latter is derived from the drth component of a
randomly selected particle from neighbor_upperi. The procedure
that generates the cexp,i and sexp,i exemplars for particle i is
illustrated in Fig. 5.

3.2.2. Proposed velocity update mechanism
In our proposed learning framework, the velocity of particle i is

updated according to its cexp,i exemplar and the Pg particle. As each
component of the cexp,i exemplar is selected through a probabil-
istic mechanism, two possible scenarios may be encountered:
(1) the cexp,i exemplar has better (i.e., lower) fitness than particle
i, that is, f (cexp,i)o f (Pi), and (2) the cexp,i exemplar has worse (i.e.,
higher) fitness than particle i, that is, f (cexp,i)Z f (Pi). Thus, two
velocity update mechanisms are employed in response to these
two scenarios. For scenario (1), particle i is encouraged to attract
towards the cexp,i exemplar as the latter has better fitness, thereby
offering particle i a more promising search direction. For scenario (2),

as the cexp,i exemplar is unlikely to contribute to particle i’s fitness
improvement, the latter is thus repelled from the former to let particle
i search the unexplored regions of the search space. Mathematically,
particle i’s velocity Vi is updated as follows:

Vi ¼
ωViþc1r4ðcexp;i�XiÞþc2r5ðPg�XiÞ; f ðcexp;iÞo f ðPiÞ
ωVi�c1r6ðcexp;i�XiÞþc2r7ðPg�XiÞ otherwise

(
ð6Þ

where r4, r5, r6, and r7 are the random numbers in the range of [0, 1].
The new position of particle i is updated by using Eq. (2). It is

then evaluated and compared with the fitness of Pi and Pg. If the
former has better fitness than the latter, the latter’s fitness and
position are replaced by the former. When particle i successfully
improves its personal best fitness, it may have some useful
information about certain components of the newly improved Pi
position. Thus, when particle i successfully improves its Pi position
and if the improved Pi is different from Pg, an elitist-based learning
strategy (EBLS) is employed to extract the useful information from

Fig. 5. Derivation of the cexp,i and sexp,i exemplars in the PSO-ITC algorithm.

Fig. 6. EBLS of the PSO-ITC.
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the newly improved Pi to further improve the Pg particle. Speci-
fically, when particle i successfully finds a better Pi, the EBLS will
iteratively check each dimension of Pg by replacing the dimension
with the corresponding dimensional value of Pi, if Pg is improved
by doing so. This mechanism enables the Pg to learn useful
information from dimensions of a Pi that have been improved,
thereby improving the algorithm’s convergence speed. The imple-
mentation of EBLS is presented in Fig. 6.

3.2.3. Proposed neighborhood search operator
The ability of particle i to improve its Pi’s fitness each time

when it is evolved through the proposed velocity update mechan-
ism is not guaranteed. To address this issue, we developed a NS
operator as an alternative strategy to further evolve particle
i when it fails to improve its Pi’s fitness during the first
learning stage.

To perform the proposed NS operator on particle i, we first
exclude the cexp,i and the sexp,i exemplars produced by particle i
itself, and store the cognitive and social exemplars produced by
other particles into the arrays of ccandidate,i¼[cexp,1, cexp,2,…,cexp,i�1,
cexp,iþ1,…,cexp,S] and scandidate,i¼[sexp,1, sexp,2,…,sexp,i�1, sexp,iþ1,…,
sexp,S], respectively. Based on the fitness criterion, we select two
guidance particles, namely sguide,i and cguide,i from the arrays of

ccandidate,i and scandidate,i, respectively, through the roulette wheel
selection. An oexp,i exemplar, which is used to guide particle i in the
NS operator, is then derived from the selected cguide,i and sguide,i.
Specifically, if a randomly generated number is smaller than 0.5,
the dth dimension of the oexp,i exemplar, oexp,i (d), is donated by
the sguide,i(d). Otherwise, it is contributed by the dth component of
cguide. The procedure NS_Generate _Exemplars used in generating
the oexp,i exemplar is illustrated in Fig. 7.

Similar to the cexp,i exemplar, the fitness of oexp,i exemplar could
either be better or worse than the personal best fitness of particle i.
Thus, a similar strategy is employed to handle these scenarios: (1) if
f (oexp,i)o f (Pi), particle i is attracted towards the oexp,i exemplar and
(2) if f (oexp,i)Z f (Pi), particle i is repelled from the oexp,i exemplar.
Specifically, each particle i adjusts its Pi as follows:

Pi;temp ¼
Piþcr8ðoexp;i�PiÞ; f ðoexp;iÞo f ðPiÞ
Pi�cr9ðoexp;i�PiÞ otherwise

(
ð7Þ

where Pi,temp is the adjusted cognitive experience of particle i and r8
and r9 are the random numbers in the range of [0, 1]. The fitness of
Pi,temp is then evaluated and compared with the Pi and Pg. If the
former’s fitness is better than the latter, the improved Pi,temp

replaces both Pi and Pg. As in the previous subsection, if the newly
improved Pi,temp has better fitness than the old Pi, the EBLS is

Fig. 7. Derivation of the oexp,i exemplar in the PSO-ITC algorithm.

Fig. 8. NS operator of the PSO-ITC algorithm.

W.H. Lim, N.A. Mat Isa / Engineering Applications of Artificial Intelligence 27 (2014) 80–10286



triggered to extract the useful information from Pi,temp to refine the
Pg,. The NS operator’s implementation is presented in Fig. 8.

3.3. Complete framework of the PSO-ITC

Together with the aforementioned components, the implementa-
tion of the proposed PSO-ITC is summarized in Fig. 9. Although some
working mechanisms in PSO with expanding neighborhood topology
(PSOENT) proposed by Marinakis and Marinaki (2013) are similar to
PSO-ITC, several differences exist between these two PSO variants.
First, the particle’s topology connectivity in our PSO-TVTC is updated
according to the schedule defined in Eq. (3), whereas PSOENT updates
its neighborhood based on the quality of the produced solution.
Second, our PSO-ITC is equipped with the shuffling mechanism in
the ITC module to reassign a particle’s neighborhood members when
the algorithm fails to improve the global best fitness for certain FEs. In
contrast, PSOENT expands its neighborhood when a similar circum-
stance is encountered. Finally, a learning framework is designed for
the PSO-ITC to improve the algorithm’s performance, whereas no such
learning framework is adopted by the PSOENT.

4. Simulation results

In this section, we describe the experimental settings used to
evaluate the PSO-ITC and present the experimental results.

4.1. Benchmark functions

In this paper, we employ a total of 20 scalable benchmark functions
(Suganthan et al., 2005; Tang et al., 2011; Yao et al., 1999) to
extensively evaluate the performance of PSO-ITC and its contenders.
We perform the evaluationwith 50 variables, D¼50. Table 1 lists these
benchmarks and describes their formulae, their feasible search range
RG, their global minimum fitness Fmin, and their accuracy level ε. The
accuracy level is used to decide whether a particular algorithm run is

successful, that is, the problem is considered solved when the
approximate solution is not farther than ε from the actual one.

Table 1 shows that the employed benchmarks are categorized
into four classes: (1) conventional problems, (2) rotated problems,
(3) shifted problems, and (4) complex problems. Each function in
the conventional problems (F1–F8) has a different characteristic,
which enables us to assess the algorithm’s performance with the
use of various criteria. For example, function F1 is used to test the
algorithm’s convergence speed, as it is relatively easy to be solved.
Functions F4, F5, F7, and F8 are multimodal functions used to
evaluate the algorithm’s capability to escape from the local
optima, as these functions consist of a large number of local
optima in a high-dimensional case. The rotated problems (F9–F13)
are developed to prohibit a one-dimensional search, which is
permissible in certain conventional problems (e.g., functions F1,
F4, F5, and F8). The prevention of one-dimensional search can be
done by multiplying the original Xi variable with an orthogonal
matrix M (Salomon, 1996) to produce a rotated variable Zi, that is,
Zi ¼MnXi. As a result, any change that occurs in Xi will affect all
dimensions in Zi, which then leads to non-separability of the
rotated problems. For shifted problems (F14–F17), a vector o¼[o1,
o2,…,oD] is defined to adjust the global optima of the conventional
problems to a new location, Zi¼Xi–o. The complex problems (F18–
F20) consist of the shifted and rotated problems (F18 and F19) and
the expanded problem (F20). The former integrates both the
rotating and the shifting characteristics into the conventional
problems, whereas the latter is derived by taking the two-
dimensional Rosenbrock function (F3) as the input argument of
the Griewank function (F8) (Suganthan et al., 2005).

4.2. Simulation settings for the involved PSO algorithms

In this paper, we employ nine well-established PSO variants for
a thorough comparison of the PSO-ITC with other PSO variants.
The parameter settings for all PSO variants are extracted from their
corresponding literatures and summarized in Table 2. The para-
meter settings of these nine PSO variants are set by their

Fig. 9. Complete framework of the PSO-ITC algorithm.
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corresponding authors, and these settings are the optimized ones.
For our PSO-ITC, a parameter sensitivity analysis described in the
following subsection is performed to investigate the effect of
parameter z on the searching performance of the PSO-ITC.

To ensure fair performance assessment between the PSO-ITC and
its contenders, all PSO variants are run independently 30 times on the
employed 20 benchmarks. We use the maximum number of fitness
evaluation FEmax as the termination criterion for all involved algo-
rithms. In addition, the calculations are stopped if the exact solution Xn

is found, F(X)¼F(Xn). The population size and FEmax used in D¼50
cases are 30 and 300,000, respectively (Suganthan et al., 2005).

4.3. Performance metrics

We assess the PSO’s performance based on three criteria,
namely accuracy, reliability, and efficiency, through the mean
fitness value (Fmean), success rate (SR), and success performance
(SP), respectively (Suganthan et al., 2005).

Table 1
Twenty benchmark functions used in this study (note:f biasj;8 jA ½1;7� denotes the shifted fitness value applied to the corresponding functions).

No. Function name Formulae RG Fmin ε

Category I: conventional problems
F1 Sphere F1ðXiÞ ¼∑D

d ¼ 1X
2
i;d ½�100;100�D 0 1:0e�6

F2 Schwefel 1.2
F2ðXiÞ ¼∑D

d ¼ 1 ∑d
j ¼ 1Xi;j

� �2 ½�100;100�D 0 1:0e�6

F3 Rosenbrock F3ðXiÞ ¼∑D�1
d ¼ 1ð100ðX2

i;d�Xi;dþ1Þ2þðXi;d�1Þ2Þ ½�2:048;2:048�D 0 1:0e�2

F4 Rastrigin F4ðXiÞ ¼∑D
d ¼ 1ðX2

i;d�10 cos ð2πXi;dÞþ10Þ ½�5:12;5:12�D 0 1:0e�2

F5 Noncontinuous Rastrigin F5ðXiÞ ¼∑D
d ¼ 1ðY2

i;d�10 cos ð2πYi;dÞþ10Þ

where Yi;d ¼
Xi;d ; jXi;djo0:5
roundð2Xi;dÞ=2; jXi;djZ0:5

( ½�5:12;5:12�D 0 1:0e�2

F6 Griewank F6ðXiÞ ¼∑D
d ¼ 1X

2
i;d=4000�∏D

d ¼ 1 cos ðXi;d=
ffiffiffi
d

p
Þþ1 ½�600;600�D 0 1:0e�2

F7 Ackley
F7ðXiÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑D

d ¼ 1X
2
i;d=D

q� �
�exp ∑D

d ¼ 1 cos ð2πXi;dÞ=D
� �

þ20þe

½�32;32�D 0 1:0e�2

F8 Weierstrass F8ðXiÞ ¼∑D
d ¼ 1 ∑k max

k ¼ 0 ½ak cos ð2πbkðXi;dþ0:5ÞÞ�
� �

�D∑k max
k ¼ 0 ½ak cos ðπbkÞ�

a¼ 0:5; b¼ 3; k max ¼ 20

½�0:5;0:5�D 0 1:0e�2

Category II: rotated problems
F9 Rotated sphere F9ðXiÞ ¼ F1ðZiÞ; Zi ¼MnXi ½�100;100�D 0 1:0e�6
F10 Rotated Schwefel 1.2 F10ðXiÞ ¼ F2ðZiÞ; Zi ¼MnXi ½�100;100�D 0 1:0e�2
F11 Rotated Rosenbrock F11ðXiÞ ¼ F3ðZiÞ; Zi ¼MnXi ½�2:048;2:048�D 0 1:0e�2
F12 Rotated Rastrigin F12ðXiÞ ¼ F4ðZiÞ; Zi ¼MnXi ½�5:12;5:12�D 0 1:0e�2
F13 Rotated Grienwanks F13ðXiÞ ¼ F6ðZiÞ; Zi ¼MnXi ½�600;600�D 0 1:0e�2
Category III: shifted problems
F14 Shifted sphere F14ðXiÞ ¼ F1ðZiÞþ f bias1 ; Zi ¼ Xi�o; f bias1 ¼ �450 ½�100;100�D �450 1:0e�6
F15 Shifted Rastrigin F15ðXiÞ ¼ F4ðZiÞþ f bias2 ; Zi ¼ Xi�o; f bias2 ¼ �330 ½�5:12;5:12�D �330 1:0e�2
F16 Shifted Noncontinuos Rastrigin F16ðXiÞ ¼ F5ðZiÞþ f bias3 ; Zi ¼ Xi�o; f bias3 ¼ �330 ½�5:12;5:12�D �330 1:0e�2
F17 Shifted Griewank F17ðXiÞ ¼ F6ðZiÞþ f bias4 ; Zi ¼ Xi�o; f bias4 ¼ �180 ½�600;600�D �180 1:0e�2
Category IV: complex problems
F18 Shifted Rotated Griewank F18ðXiÞ ¼ F6ðZiÞþ f bias5 ; Zi ¼ ðXi�oÞnM; f bias5 ¼ �180 ½�600;600�D �180 1:0e�2
F19 Shifted Rotated High Conditioned Elliptic F19ðXiÞ ¼∑D

d ¼ 1ð106Þd�1=D�1Z2
i;dþ f bias6 ; Zi ¼ ðXi�oÞnM; f bias6 ¼ �450, ½�100;100�D �450 1:0e�6

F20 Shifted Expanded Griewank's plus Rosenbrock F20 ¼ F6ðF3ðZi;1 ; Zi;2ÞÞþF6ðF3ðZi;2 ; Zi;3ÞÞþ⋯þF6ðF3ðZi;D�1 ; Zi;DÞÞ
þF6ðF3ðZi;D; Zi;1ÞÞþ f bias7

½�5;5�D �130 1:0e�2

Zi ¼ Xi�o; f bias7 ¼ �130

Table 2
Parameter settings of the involved PSO algorithms.

Algorithm (references) Population topology Parameter settings

APSO (Zhan et al., 2009) Fully connected ω : 0:9�0:4; c1þc2 : ½3:0;4:0�; δ¼ ½0:05;0:1�; smax ¼ 1:0; smin ¼ 0:1
FLPSO-QIW (Tang et al., 2011) Comprehensive learning ω : 0:9�0:2; c1 : 2�1:5; c2 : 1�1:5; m¼ 1; Pi ¼ ½0:1;1�; K1 ¼ 0:1; K2 ¼ 0:001; s1 ¼ 1; s2 ¼ 0
FlexiPSO (Kathrada, 2009) Fully connected and local ring ω : 0:5�0:0; c1; c2; c3 : ½0:0;2:0�; ε¼ 0:1; α¼ 0:01%
FPSO (Montes de Oca et al.,
2009)

Decreasing χ ¼ 0:729; ∑ci ¼ 4:1

FIPSO (Mendes et al., 2004) Local URing χ ¼ 0:729; ∑ci ¼ 4:1
OLPSO-L (Zhan et al., 2011) Orthogonal learning ω : 0:9�0:4; c¼ 2:0; G¼ 5
HPSO-TVAC (Ratnaweera
et al., 2004)

Fully connected ω : 0:9�0:4; c1 : 2:5�0:5; c2 : 0:5�2:5

RPPSO (Zhou et al., 2011) Random ω : 0:9�0:4; clarge ¼ 6; csmall ¼ 3
BPSO (Shi and Eberhart,
1998)

Fully connected ω : 0:9�0:4; c1 ¼ c2 ¼ 2:0

PSO-ITC Increasing ω : 0:9�0:4; c1 ¼ c2 ¼ c¼ 2:0; z¼ 5; TCmin ¼ 1; TCmax ¼ S�1
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Fmean value is the mean value of the differences between the
best (i.e., lowest) fitness value found by the algorithm and the
actual global optimum’s fitness (Fmin) (Suganthan et al., 2005).
A smaller Fmean is favorable, as it implies that the algorithm has
better searching accuracy. The SR value is used to evaluate the
consistency of an algorithm to achieve a successful run, that is, the
ability to solve the given problem with the predefined accuracy
level ε (Suganthan et al., 2005). The algorithm with the larger SR
value is more reliable, as it can consistently solve the problemwith
predefined ε.

The computational cost required by an algorithm to solve the
problem with the predefined ε can be measured by the SP value
(Suganthan et al., 2005) or the mean computational time (tmean).
However, previous papers state that the former is more suitable
than the latter for evaluating the performance of algorithms that
solve real-world problems (Zhan et al., 2009). Thus, we employ
the SP value to justify the algorithm’s speed. A smaller SP value is
preferable as it implies that the algorithm requires less computa-
tion cost to solve the problems with acceptable accuracy levels.
Finally, to thoroughly investigate the significance of the perfor-
mance deviation between the PSO-ITC and its peers, we perform a
two-tailed t-test (Tang et al., 2011) with 58 degrees of freedom at a
0.05 level of significance (or 95% confidence level). More precisely,
the h sign produced by the t-test is used to evaluate if the
performance of the PSO-ITC is better (i.e., h¼“þ”), insignificant
(i.e., h¼“¼”), or worse (i.e., h¼“�”) than the other nine algo-
rithms at the statistical level.

4.4. Parameter sensitivity analysis

As explained in the previous section, the ITC module performs
the shuffling mechanism when the PSO-ITC fails to improve the
fitness of the global best particle, that is, f(Pg) for z successive FEs.
The dependency of the ITC module on z implies that different
values of z may affect the performance of the PSO-ITC. Thus, we
perform parameter sensitivity analysis to investigate the perfor-
mance of the PSO-ITC under variant z values.

The parameter settings of the PSO-ITC in the parameter
sensitivity analysis are as follows: we evaluate four 10-D bench-
marks with different characteristics, namely the Sphere (F1),
Rastrigin (F4), Noncontinuous Rastrigin (F5), and Ackley (F7)
functions. These problems are solved by PSO-ITC with the use of
z with an integer value from 1 to 9. Each different z value is run 30
times, with the population size (S) and the maximum fitness

evaluation numbers (FEmax) of 10 and 5.00Eþ04, respectively. The
experimental findings obtained by the PSO-ITC with different
values of z are summarized in Fig. 10.

The simulation results reveal that the searching accuracy of the
PSO-ITC, represented by the Fmean value, is not sensitive to
the parameter z. More specifically, the PSO-ITC successfully locates
the global optima of all employed benchmarks (i.e., functions F1, F4,
F5, and F7) regardless of which z value is chosen. We omit the results
of Fmean from the graphs in Fig. 10 because the Fmean values produced
by the PSO-ITC in all employed benchmarks are zero for z¼1,..,9 and
presenting all-zero data in the graphs is not useful. We also observe
that the parameter z influences the algorithm’s efficiency, which is
represented by SP values. Specifically, the PSO-ITC’s efficiency deterio-
rates when the values of z are set too high (i.e., z¼7, 8, 9) or too low
(i.e., z¼1, 2, 3). We conjecture that when the value of z is set too low,
the shuffling mechanism is not triggered frequently enough. Conse-
quently, the diversity provided by the ITC modules to the population is
inadequate, which in turn entraps the PSO-ITC swarm at local optima
for too long a time. In contrast, the shuffling mechanism in the ITC
module can be overemphasized when the z value is set too high.
In this extreme scenario, the ITC module provides excessive diversity
to the swarm, which in turn potentially jeopardizes the convergence
rate of the PSO-ITC toward the problem’s global optimum. Finally,
the results of parameter sensitivity analysis reveal that the PSO-ITC
efficiently solves the four employed benchmarks with z values
between 4 and 6. More precisely, the PSO-ITC achieves the best SP
values in functions F1 and F4 when z is set as 6, whereas the z value of
5 solves the functions F5 and F7 with the least computational cost.
Based on these findings, we set z to be 5 for PSO-IDL in the following
performance evaluations.

4.5. Comparisons of the PSO-ITC with other well-established PSO
variants

The results of the Fmean, standard deviation (SD), t-test (h), SR,
and SP attained by all nine PSO variants for all problems are
presented in Table 3. The best result for each benchmark is
indicated in boldface. We also include the convergence graphs of
all benchmark problems in Appendix A1 for us to qualitatively (i.e.,
visually) compare the Fmean and convergence speed of all involved
algorithms.

At the bottom of Table 3, we summarize the Fmean comparison
results between PSO-ITC and other peers as “w/t/l” and #BMF. “w/t/l”
means that PSO-ITC wins over a particular peer in w functions, ties for
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Fig. 10. Mean fitness (Fmean) and success performance (SP) values obtained by the PSO-ITC on (a) F1 Sphere, (b) F4 Rastrigin, (c) F5 Noncontinuous Rastrigin, and (d) F7
Ackley functions with different z values.
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Table 3
Overall experimental results for 50-D problems.

f APSO FLPSO-QIW FlexiPSO FPSO FIPSO OLPSO-L HPSO-TVAC RPPSO BPSO PSO-ITC

F1 Fmean 2.50E�01 2.90E�81 1.78E�04 7.02Eþ01 2.96E�01 4.86E�33 1.09E�05 1.28E�02 4.67Eþ03 0.00Eþ00
SD 1.81E�01 5.97E�81 5.23E�05 6.98Eþ01 8.06E�01 5.15E�33 3.69E�06 2.98E�02 7.30Eþ03 0.00Eþ00
SR 0.00 100.00 0.00 13.33 80.00 100.00 0.00 73.33 63.33 100.00
SP Inf 6.04Eþ04 Inf 9.68Eþ04 9.86Eþ04 1.52Eþ05 Inf 1.52Eþ04 1.63Eþ04 1.78Eþ03
h þ þ þ þ þ þ þ þ þ

F2 Fmean 1.46Eþ03 2.62Eþ02 1.42Eþ00 3.44Eþ03 8.13Eþ00 5.71Eþ02 9.48E�02 9.12Eþ01 2.08Eþ04 0.00Eþ00
SD 4.82Eþ02 8.90Eþ01 6.67E�01 1.33Eþ03 2.47Eþ01 1.85Eþ02 3.60E�02 4.21Eþ01 1.59Eþ04 0.00Eþ00
SR 0.00 0.00 0.00 0.00 70.00 0.00 0.00 0.00 0.00 100.00
SP Inf Inf Inf Inf 1.62Eþ05 Inf Inf Inf Inf 6.16Eþ04
h þ þ þ þ ¼ þ þ þ þ

F3 Fmean 4.62Eþ01 4.22Eþ01 4.48Eþ01 5.68Eþ01 4.77Eþ01 4.30Eþ01 4.60Eþ01 4.76Eþ01 2.10Eþ02 4.32Eþ01
SD 1.53Eþ00 2.39E�01 1.04Eþ00 7.08Eþ00 8.44E�01 3.18Eþ00 5.70E�01 4.30E�01 4.34Eþ02 8.16Eþ00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33
SP Inf Inf Inf Inf Inf Inf Inf Inf Inf 8.20Eþ06
h þ � þ þ þ � þ þ þ

F4 Fmean 5.80E�01 2.60Eþ00 2.12E�04 1.85Eþ01 1.57Eþ00 3.32E�01 9.47E�04 9.25Eþ00 1.15Eþ02 0.00Eþ00
SD 6.29E�01 1.52Eþ00 6.24E�05 1.02Eþ01 3.71Eþ00 6.03E�01 3.02E�04 1.55Eþ01 7.78Eþ01 0.00Eþ00
SR 0.00 6.67 100.00 0.00 40.00 73.33 100.00 70.00 3.33 100.00
SP Inf 3.46Eþ06 9.72Eþ04 Inf 3.56Eþ05 2.97Eþ05 1.85Eþ05 4.19Eþ04 4.70Eþ05 2.24Eþ03
h þ þ þ þ þ þ þ þ þ

F5 Fmean 3.60E�02 5.58Eþ00 2.07E�04 1.60Eþ01 5.70E�01 1.17Eþ00 1.50E�03 1.25Eþ01 1.14Eþ02 0.00Eþ00
SD 3.22E�02 2.36Eþ00 7.51E�05 9.56Eþ00 8.65E�01 1.15Eþ00 1.87E�03 1.94Eþ01 5.81Eþ01 0.00Eþ00
SR 6.67 0.00 100.00 0.00 33.33 40.00 96.67 60.00 3.33 100.00
SP 2.60Eþ06 Inf 9.88Eþ04 Inf 2.66Eþ05 6.75Eþ05 2.05Eþ05 2.50Eþ04 6.04Eþ05 2.57Eþ03
h þ þ þ þ þ þ þ þ þ

F6 Fmean 1.70E�01 5.75E�04 8.34E�03 1.86Eþ00 1.93E�01 0.00Eþ00 3.86E�03 7.08E�03 3.92Eþ01 0.00Eþ00
SD 8.21E�02 2.21E�03 9.48E�03 9.28E�01 3.47E�01 0.00Eþ00 6.55E�03 1.85E�02 7.00Eþ01 0.00Eþ00
SR 0.00 100.00 60.00 6.67 70.00 100.00 90.00 86.67 73.33 100.00
SP Inf 5.00Eþ04 1.57Eþ05 1.60Eþ05 1.05Eþ05 1.24Eþ05 7.23Eþ04 1.34Eþ0 1.13Eþ04 2.20Eþ03
h þ ¼ þ þ þ ¼ þ þ þ

F7 Fmean 6.60E�02 3.43E�14 3.55E�03 1.80Eþ00 1.70E�01 5.09E�15 1.57E�03 7.47E�01 1.21Eþ01 0.00Eþ00
SD 2.57E�02 1.07E�14 5.36E�04 1.10Eþ00 3.38E�01 1.79E�15 1.99E�04 9.17E�01 5.99Eþ00 0.00Eþ00
SR 0.00 100.00 100.00 3.33 53.33 100.00 100.00 36.67 16.67 100.00
SP Inf 4.79Eþ04 1.59Eþ05 3.36Eþ05 1.07Eþ05 1.25Eþ05 8.39Eþ04 1.25Eþ05 6.96Eþ04 1.54Eþ03
h þ þ þ þ þ þ þ þ þ

F8 Fmean 5.44E�01 1.88E�05 1.12E�01 3.35Eþ00 9.80E�01 0.00Eþ00 2.03Eþ00 4.69E�01 8.09Eþ00 0.00Eþ00
SD 1.88E�01 8.29E�05 1.16E�02 2.35Eþ00 9.53E�01 0.00Eþ00 3.64E�01 1.25Eþ00 5.90Eþ00 0.00Eþ00
SR 0.00 100.00 0.00 0.00 16.67 100.00 0.00 83.33 16.67 100.00
SP Inf 6.67Eþ04 Inf Inf 4.59Eþ05 1.66Eþ05 Inf 3.15Eþ04 2.11Eþ05 1.89Eþ03
h þ ¼ þ þ þ ¼ þ þ þ

F9 Fmean 2.01E�01 1.15E�80 2.10E�04 6.28Eþ01 4.97E�01 2.89E�33 1.16E�05 4.98E�03 4.67Eþ03 0.00Eþ00
SD 1.17E�01 4.42E�80 6.90E�05 6.96Eþ01 1.06Eþ00 2.19E�33 4.81E�06 1.58E�02 5.71Eþ03 0.00Eþ00
SR 0.00 100.00 0.00 13.33 73.33 100.00 0.00 86.67 56.67 100.00
SP Inf 6.04Eþ04 Inf 8.24Eþ04 9.70Eþ04 1.52Eþ05 Inf 1.35Eþ04 2.20Eþ04 2.21Eþ03
h þ ¼ þ þ þ þ þ ¼ þ
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F10 Fmean 1.26Eþ03 2.62Eþ02 4.92Eþ00 3.23Eþ03 8.45Eþ00 1.92Eþ03 1.13E�01 9.09Eþ01 2.57Eþ04 0.00Eþ00
SD 3.22Eþ02 7.62Eþ01 3.67Eþ00 1.79Eþ03 2.24Eþ01 4.17Eþ02 5.78E�02 3.77Eþ01 1.75Eþ04 0.00Eþ00
SR 0.00 0.00 0.00 0.00 73.33 0.00 0.00 3.33 3.33 100.00
SP Inf Inf Inf Inf 1.62Eþ05 Inf Inf 1.69Eþ06 7.47Eþ05 6.66Eþ04
h þ þ þ þ þ þ þ þ þ

F11 Fmean 5.15Eþ01 4.55Eþ01 4.59Eþ01 5.62Eþ01 4.85Eþ01 4.24Eþ01 4.60Eþ01 5.03Eþ01 1.08Eþ02 4.37Eþ01
SD 1.39Eþ01 3.16Eþ00 3.60Eþ00 7.00Eþ00 5.72E�02 3.73Eþ00 3.03Eþ00 8.66Eþ00 2.25Eþ02 7.00E�01
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SP Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
h þ þ þ þ þ � þ þ þ

F12 Fmean 1.83Eþ02 1.26Eþ02 1.49Eþ02 1.80Eþ02 2.65Eþ01 9.80Eþ01 9.07Eþ01 4.25Eþ01 1.70Eþ02 0.00Eþ00
SD 5.61Eþ01 1.76Eþ01 3.42Eþ01 5.01Eþ01 3.39Eþ01 5.16Eþ01 2.74Eþ01 4.64Eþ01 7.41Eþ01 0.00Eþ00
SR 0.00 0.00 0.00 0.00 53.33 0.00 0.00 40.00 6.67 100.00
SP Inf Inf Inf Inf 2.60Eþ05 Inf Inf 3.95Eþ04 3.84Eþ05 4.13Eþ04
h þ þ þ þ þ þ þ þ þ

F13 Fmean 2.10Eþ02 1.52Eþ00 2.67Eþ02 7.28Eþ00 1.94E�01 7.58E�01 1.55Eþ02 3.03Eþ01 2.04Eþ02 0.00Eþ00
SD 1.01Eþ02 5.39E�01 9.17Eþ01 5.62Eþ00 4.08E�01 2.68E�01 3.95Eþ01 5.60Eþ01 2.48Eþ02 0.00Eþ00
SR 0.00 0.00 0.00 6.67 80.00 0.00 0.00 53.33 43.33 100.00
SP Inf Inf Inf 2.59Eþ05 8.72Eþ04 Inf Inf 2.15Eþ04 2.81Eþ04 4.09Eþ03
h þ þ þ þ þ þ þ þ þ

F14 Fmean 2.27E�01 1.44E�13 3.65E�04 1.71Eþ04 6.20Eþ00 5.68E�14 1.52E�05 1.44E�01 2.31Eþ04 1.01E�08
SD 9.70E�02 4.15E�14 6.12E�04 1.47Eþ04 3.90Eþ00 0.00Eþ00 4.12E�06 5.22E�01 1.79Eþ04 3.91E�09
SR 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 100.00
SP Inf 5.85Eþ04 Inf Inf Inf 1.37Eþ05 Inf Inf Inf 2.28Eþ05
h þ � þ þ þ � þ þ þ

F15 Fmean 5.92E�01 5.88Eþ00 2.06E�04 2.08Eþ02 1.31Eþ02 1.43Eþ00 1.34E�01 1.62Eþ02 2.93Eþ02 1.75E�07
SD 7.76E�01 2.51Eþ00 6.95E�05 4.59Eþ01 2.93Eþ01 1.10Eþ00 4.32E�01 4.08Eþ01 5.76Eþ01 5.88E�08
SR 0.00 0.00 100.00 0.00 0.00 13.33 90.00 0.00 0.00 100.00
SP Inf Inf 1.04Eþ05 Inf Inf 1.27Eþ06 2.55Eþ05 Inf Inf 1.29Eþ05
h þ þ þ þ þ þ þ þ þ

F16 Fmean 7.20E�03 1.20Eþ01 2.06E�04 1.63Eþ02 1.48Eþ02 3.00Eþ00 1.02E�01 2.09Eþ02 3.14Eþ02 2.07E�07
SD 1.06E�02 3.16Eþ00 6.44E�05 2.82Eþ01 3.94Eþ01 1.78Eþ00 3.05E�01 5.21Eþ01 6.18Eþ01 7.68E�08
SR 86.67 0.00 100.00 0.00 0.00 6.67 90.00 0.00 0.00 100.00
SP 2.51Eþ05 Inf 1.15Eþ05 Inf Inf 3.45Eþ06 2.55Eþ05 Inf Inf 1.43Eþ05
h þ þ þ þ þ þ þ þ þ

F17 Fmean 0.00Eþ00 2.05E�03 2.76Eþ02 1.46Eþ03 0.00Eþ00 1.47E�01 5.72E�03 0.00Eþ00 7.21Eþ02 0.00Eþ00
SD 0.00Eþ00 3.49E�03 3.86Eþ02 4.63Eþ02 0.00Eþ00 1.07E�01 3.13E�02 0.00Eþ00 4.54Eþ02 0.00Eþ00
SR 100.00 100.00 56.67 0.00 100.00 10.00 96.67 100.00 13.33 100.00
SP 1.20Eþ04 4.88Eþ04 2.45Eþ03 Inf 2.47Eþ03 1.33Eþ06 8.56Eþ04 9.09Eþ02 4.54Eþ03 6.83Eþ02
h ¼ þ ¼ þ ¼ þ þ ¼ þ

F18 Fmean 1.49Eþ00 6.02E�03 1.52E�01 2.06Eþ02 4.81Eþ00 3.76E�02 4.96E�03 6.60E�01 7.05Eþ02 9.33E�03
SD 1.47E�01 1.04E�02 7.18E�02 1.44Eþ02 1.78Eþ00 4.00E�02 7.37E�03 2.61E�01 4.24Eþ02 1.16E�02
SR 0.00 83.33 0.00 0.00 0.00 13.33 66.67 0.00 0.00 50.00
SP Inf 2.04Eþ05 Inf Inf Inf 2.20Eþ06 3.08Eþ05 Inf Inf 4.93Eþ05
h þ � þ þ þ þ � þ þ

F19 Fmean 1.32Eþ07 1.89Eþ07 1.32Eþ07 1.03Eþ08 1.02Eþ07 1.82Eþ07 1.62Eþ06 1.49Eþ07 6.11Eþ08 7.98Eþ06
SD 4.09Eþ06 4.92Eþ06 8.09Eþ06 8.26Eþ07 3.44Eþ06 5.14Eþ06 7.45Eþ05 1.13Eþ07 6.42Eþ08 2.55Eþ06
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SP Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
h þ þ þ þ þ þ � þ þ þ
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t functions, and loses in l functions. #BMF represents the number of
the best (i.e., lowest) Fmean values achieved by each PSO variant. t-test
results (h) are summarized as “þ/¼/�” to indicate the number of
functions in which PSO-ITC performs significantly better, almost the
same as, and significantly worse than its contender, respectively.
Finally, the SR and the SP results are summarized as “#S/#PS/#NS”
and #BSP, respectively, where the former indicates the numbers of
functions that are solved completely (i.e., SR¼100%), solved partially
(i.e., 0%oSRo100%), and never solved (i.e., SR¼0%) by a particular
PSO variant, whereas the latter represents the number of the best
(i.e., lowest) SP values attained by the involved PSO variants.

4.5.1. Comparison among the Fmean results
Table 3 indicates that the proposed PSO-ITC has the most

superior searching accuracy as it outperforms its peers with a
large margin in the majority of the problems. Specifically, the PSO-
ITC achieves 15 best Fmean values out of the 20 employed bench-
marks. For the conventional (F1–F8) and the rotated (F9–F13)
problems, the proposed PSO-ITC successfully locates the global
optima of all problems, except for the functions F3 and F11. More
particularly, the PSO-ITC is the only algorithm to solve the
conventional functions of F1, F2, F4, F5, and F7. Another significant
finding is that except for the PSO-ITC, the remaining PSO variants
experience different levels of performance degradation in the
rotated problems compared with the conventional counterpart.
Our PSO-ITC is the only PSO variant that is robust in the rotation
operation, as it is able to find the global optima for all rotated
problems, except for function F11. We also observe that the Fmean

values attained by all involved algorithms in the conventional (F3)
and the rotated (F11) Rosenbrock functions are relatively large. The
inferior performance of all algorithms in functions F3 and F11 is
attributed to the fact that the global optima of these functions are
located in a long, narrow, parabolic-shaped valley to test the
algorithm’s ability in navigating flat regions with a small gradient.
Most of the involved algorithms are able to locate the aforemen-
tioned valley but are hardly able to converge towards the global
optimum, which causes them to obtain a poor Fmean value.

Meanwhile, all the involved algorithms, including PSO-ITC, also
suffer performance deterioration in shifted problems (F14–F17),
as none of them is able to find the global optima for all shifted
problems, except for function F17. Nevertheless, we observe that
the PSO-ITC is least affected by the shifting operation, as it
produces the three best Fmean and one second best Fmean values
in four shifted problems. Specifically, the PSO-ITC is the only
algorithm to successfully obtain the Fmean values with an accuracy
level of 10�7 in functions F15 and F16. On the complex problems
(F18–F20), we observe further performance degradation of the
involved algorithms, as the inclusion of both rotating and shifting
operations (F18–F19) and expanded operation (F20) has signifi-
cantly increased the problems’ complexities, which makes the
problems more difficult to solve. We observe that the performance
of the PSO-ITC in complex problems is competitive, as it produces
the best, second best, and third best Fmean values in functions 20,
19, and 18, respectively. Despite slightly inferior Fmean values
compared with the FLPSO-QIW and HPSO-ITC in functions 18
and 19, such performance deviations are relatively insignificant
when compared with the outstanding performances of the PSO-
ITC over the aforementioned peers in other types of problems.

4.5.2. Comparisons among the t-test results
The t-test results, represented by the h signs in Table 3, are

largely consistent with the previously reported Fmean values, given
that the summarized results of “w/t/l” and “þ/¼/�” are almost
the same. Table 3 shows that PSO-ITC performs significantly better
than its peers in more problems and achieves significantly worseTa
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results than its peers in fewer problems. Specifically, PSO-ITC
significantly outperforms all its contenders in 10 of the 20
employed functions, that is, functions F1, F4, F5, F7, F10, F12, F13,
F15, F16, and F20. These observations validate the excellent
searching accuracy of the PSO-ITC compared with its peers.

Another noteworthy observation is that despite the largely
different Fmean values produced by PSO-ITC and FLPSO-QIW in
function F6 (i.e., 0 and 5.75E-04, respectively), the t-test's result
reveals that such a performance difference is insignificant at a
statistical level. Similar ambiguous scenarios could be observed in
FLPSO-QIW, FIPSO, RPPSO, and FlexiPSO in functions F6, F2, F9, and
F17, respectively. This ambiguity is due to fact that when certain
algorithms, such as FLPSO-QIW, run with a predefined number of
independent runs, they have a small probability of stagnating in
the local optima, thereby producing a relatively large fitness value
that can jeopardize the overall Fmean value. As shown in Table 3,
despite having a relatively large Fmean value in function F6, the
FLPSO-QIW successfully solves the problem completely, that is,
SR¼100%.

4.5.3. Comparisons among the SR results
From Table 3, we observe that the PSO-ITC has a more superior

searching reliability than its peers, as it is able to completely solve
15 of the 20 employed benchmarks, that is, it is 2.5 times better
than the second ranked OLPSO-L that completely solved six
problems. Specifically, the PSO-ITC has successfully solved all the
conventional and the rotated problems completely, except for the
rotated and the non-rotated Rosenbrock problems (i.e., F11 and
F3). The PSO-ITC is the only algorithm to completely solve the
functions F2, F10, F12, and F13, as well as partially solve function
F3. The excellent performance of the PSO-ITC can also be observed
in the shifted problems, as it is the only algorithm to completely
solve all the shifted problems with the predefined ε. For complex
problems, we observe that the searching reliabilities of all involved
algorithms are compromised, as none of them is able to solve the
problems completely or partially, except for function F18, where
PSO-ITC achieves the third best SR value. Although none of the
involved algorithms is able to solve functions F19 and F20
completely, PSO-ITC performs competitively because it produces
prominent Fmean values in these aforementioned problems, as
reported in Table 3.

4.5.4. Comparisons among the SP results
Obtaining the SP value is impossible if an algorithm never

solves a particular problem (i.e., SR¼0%) because the SP value is
the computational cost required by an algorithm to solve the
problem with a pre-specified accuracy level ε. In this scenario, an
infinity value “Inf” is assigned to the SP value, and only the
convergence graphs, as illustrated in Appendix A, are used to
justify the algorithms’ speed.

From Table 3, we observe that PSO-ITC achieves the best SP
values in all conventional problems, which implies that our
proposed approach requires the least computational cost to solve
the conventional problems with an acceptable ε. The excellent
convergence of PSO-ITC in these problems is well supported by the
corresponding convergence graphs shown in Appendix A. Except
for function F3, we observe a typical feature exhibited by the
convergence curves of the PSO-ITC in all other conventional
problems, that is, a curve that sharply drops off at one point,
usually at the early stage [functions F1, and F4–F8, as illustrated in
Fig. A1(a) and (d)–(h), respectively] or the middle stage [function
F2 as illustrated by Fig. A1(b)] of the optimization. These observa-
tions reveal the ability of the PSO-ITC to break out of the local
optima and to locate the global optima by consuming a signifi-
cantly small amount of FEs.

For rotated problems, the PSO-ITC achieves three (out of five)
best SP values in functions F9, F10, and F13. The competitive
convergence speeds of the PSO-ITC in the rotated problems are
also well justified by the convergence graphs in Appendix A.
Specifically, the convergence graphs of the PSO-ITC in functions
F9 and F13 [illustrated by Fig. A1(i) and (m), respectively] are
sharply dropped off at a very early stage of the optimization,
which indicates the high efficiency of PSO-ITC in solving these two
rotated problems. Meanwhile, as illustrated in Fig. A1(j) and (l),
the convergence graphs of PSO-ITC in functions F10 and F12
sharply drop off at one point at the later stage of the optimization.
These observations prove the robustness of PSO-ITC in handling
premature convergence at local optima. In contrast, the conver-
gence speed of the PSO-ITC in the shifted problems is slightly
compromised, as it produces one best, one second best, and two
third best SP values in functions F17, F16, F15, and F14, respec-
tively. We speculate that PSO-ITC may require higher computa-
tional cost to locate the shifted global optimum regions, thereby
leading to the slightly inferior SP values. Nevertheless, we observe
that the algorithmwith smaller SP values is not guaranteed to have

Table 4
Mean computation time in CPU cycle (in seconds) for 50-D problems.

f APSO FLPSO-QIW FlexiPSO FPSO FIPSO OLPSO-L HPSO-TVAC RPPSO BPSO PSO-ITC

F1 9.93Eþ02 4.65Eþ02 2.71Eþ02 2.48Eþ02 2.38Eþ02 1.32Eþ02 3.12Eþ02 2.40Eþ02 1.79Eþ02 1.44Eþ02
F2 1.03Eþ03 1.48Eþ03 2.60Eþ02 2.36Eþ02 2.28Eþ02 1.38Eþ02 2.29Eþ02 2.30Eþ02 2.28Eþ02 1.50Eþ02
F3 9.92Eþ02 7.66Eþ02 2.19Eþ02 1.95Eþ02 1.87Eþ02 1.27Eþ02 1.89Eþ02 1.89Eþ02 1.87Eþ02 1.30Eþ02
F4 4.12Eþ02 6.65Eþ02 3.52Eþ02 3.07Eþ02 1.89Eþ02 8.97Eþ01 3.20Eþ02 2.83Eþ02 1.75Eþ02 1.22Eþ02
F5 1.06Eþ03 1.24Eþ03 2.84Eþ02 2.61Eþ02 2.52Eþ02 1.43Eþ02 2.54Eþ02 2.54Eþ02 2.53Eþ02 1.65Eþ02
F6 1.03Eþ03 8.03Eþ02 2.58Eþ02 2.35Eþ02 2.26Eþ02 1.31Eþ02 2.28Eþ02 2.28Eþ02 2.26Eþ02 1.46Eþ02
F7 9.94Eþ02 7.61Eþ02 2.23Eþ02 1.99Eþ02 1.90Eþ02 1.31Eþ02 1.91Eþ02 1.93Eþ02 1.92Eþ02 1.35Eþ02
F8 7.43Eþ02 8.93Eþ02 6.57Eþ02 6.33Eþ02 6.24Eþ02 4.23Eþ02 6.26Eþ02 6.37Eþ02 6.02Eþ02 6.77Eþ02
F9 1.05Eþ03 7.90Eþ02 2.75Eþ02 2.50Eþ02 2.41Eþ02 1.35Eþ02 2.43Eþ02 2.44Eþ02 2.43Eþ02 1.50Eþ02
F10 4.77Eþ02 1.02Eþ03 3.92Eþ02 3.65Eþ02 3.57Eþ02 1.57Eþ02 3.60Eþ02 3.58Eþ02 3.30Eþ02 1.93Eþ02
F11 1.05Eþ03 8.28Eþ02 2.74Eþ02 2.50Eþ02 2.41Eþ02 1.31Eþ02 2.43Eþ02 2.44Eþ02 2.41Eþ02 1.50Eþ02
F12 3.12Eþ02 4.14Eþ02 2.59Eþ02 2.45Eþ02 2.42Eþ02 1.29Eþ02 2.42Eþ02 2.44Eþ02 1.71Eþ02 1.06Eþ02
F13 3.32Eþ02 4.23Eþ02 2.82Eþ02 2.69Eþ02 2.69Eþ02 1.63Eþ02 2.65Eþ02 2.75Eþ02 1.92Eþ02 1.32Eþ02
F14 4.87Eþ02 6.81Eþ02 4.42Eþ02 4.24Eþ02 4.24Eþ02 3.44Eþ02 4.25Eþ02 4.26Eþ02 3.39Eþ02 3.01Eþ02
F15 4.39Eþ02 7.59Eþ02 3.92Eþ02 3.75Eþ02 3.76Eþ02 3.55Eþ02 3.76Eþ02 3.77Eþ02 2.95Eþ02 2.89Eþ02
F16 1.04Eþ03 1.43Eþ03 2.67Eþ02 2.44Eþ02 2.37Eþ02 1.56Eþ02 2.37Eþ02 2.38Eþ02 1.71Eþ02 1.62Eþ02
F17 3.11Eþ02 8.21Eþ02 2.58Eþ02 2.45Eþ02 2.42Eþ02 3.60Eþ02 2.43Eþ02 2.42Eþ02 1.74Eþ02 1.26Eþ02
F18 1.32Eþ03 1.71Eþ03 5.56Eþ02 5.23Eþ02 5.25Eþ02 4.47Eþ02 5.27Eþ02 5.28Eþ02 4.58Eþ02 5.95Eþ02
F19 1.37Eþ03 3.01Eþ03 6.17Eþ02 5.82Eþ02 5.85Eþ02 4.60Eþ02 5.89Eþ02 5.87Eþ02 5.12Eþ02 6.24Eþ02
F20 7.65Eþ02 9.61Eþ02 6.98Eþ02 6.60Eþ02 6.63Eþ02 4.21Eþ02 6.76Eþ02 6.66Eþ02 5.15Eþ02 6.12Eþ02
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the best searching accuracy, as shown in functions F15 and F16
[illustrated by Fig. A1(o) and (p), respectively]. For example,
FlexiPSO achieves smaller SP values than the PSO-ITC in the
functions F15 and F16. However, as shown in Table 3 as well as
in Fig. A1(o) and (p), the PSO-ITC achieves a significantly better
Fmean value than FlexiPSO, and the former reaches the solution
with the predefined ε earlier than the latter. Finally, the PSO-ITC
demonstrates a competitive convergence speed in complex pro-
blems, as shown in Fig. A1(r) and (t). Specifically, the convergence
speed of the PSO-ITC in functions F18 and F20 is significantly faster
than that of its peers during the early stage of the optimization.

4.6. Comparison of mean computational time

As shown in the previous SP analysis, the proposed PSO-ITC is
more computationally efficient than its peer algorithms. To further
verify this finding, we conducted an experiment to compute the

mean computational time (tmean) or runtime of all involved PSO
variants on the employed 20 benchmarks. Similar to the previous
experiments, the dimensionality level of 50 was considered. The
mean computational times for all the algorithms were measured
on a PC Intel Core 2 Duo 2.13 GHz with 3.50 GB RAM that runs
Windows XP with Matlab implementation. The results are sum-
marized in Table 4 and Fig. 11.

The results in Table 4 and Fig. 11 show that the involved PSO
variants exhibit diverse tmean values. In general, both APSO and
FLPSO-QIW appear to have higher computational overhead with
respect to the other algorithms, as these two algorithms produce
6 and 14 worst tmean values out of the 20 employed benchmarks,
respectively. Meanwhile, we observe that the computation over-
heads of the OLPSO-L and the proposed PSO-ITC are the lowest in a
majority of the employed functions. Specifically, OLPSO-L achieves
15 best and 2 s best tmean values, whereas PSO-ITC records 5 best
and 11 s best values out of the 20 employed benchmarks. In most
of the employed benchmarks, the differences between tmean values
produced by OLPSO-L and PSO-ITC are relatively insignificant,
which suggests that these two algorithms have a comparable
computational overhead. The excellent performance of PSO-ITC
in terms of tmean and previously reported SP values confirms that
the proposed algorithm is indeed more computationally efficient
than its peers.

4.7. Effect of different strategies

The proposed PSO-ITC consists of three strategies, namely ITC
module, NS operator, and EBLS. The contribution of each strategy
in improving the PSO-ITC's overall performance is worth investi-
gating. To perform this study, we decompose the complete PSO-
ITC into (1) PSO-ITC with ITC module only (PSO-ITC1), (2) PSO-ITC
with ITC module and EBLS operator (PSO-ITC2), and (3) PSO-ITC
with ITC module and NS operator (PSO-ITC3). We compare the
Fmean values produced by PSO-ITC1, PSO-ITC2, PSO-ITC3, and
PSO-ITC with those produced by BPSO. The degree of improvement
of each PSO-ITC variant over the BPSO is expressed in terms of
percentage improvement (%Improve) calculated as follows (Lam
et al., 2012):

%Improve¼ FmeanðBPSOÞ�FmeanðζÞ
jFmeanðBPSOÞj

� 100% ð8Þ

where ζ denotes PSO-ITC1, PSO-ITC2, PSO-ITC3, or PSO-ITC. If ζ
outperforms BPSO, the %Improve has a positive value. Otherwise,
the %Improve is assigned a negative value. The (1) number of best
Fmean values (#BMF), (2) number of global optima found (#GO), and
(3) %Improve values produced by all compared algorithms in the
conventional, rotated, shifted, and complex problems are presented
in Table 5. The last column of Table 5 summarizes the overall
results, that is, the total #BMF, total #GO, and average %Improve
values achieved by all involved algorithms.

Table 5
Simulation results achieved by BPSO, PSO-ITC1, PSO-ITC2, PSO-ITC3, and PSO-ITC in 50-D problems.

Algorithm Conventional problems (F1–F8) Rotated problems (F9–F13) Shifted problems (F14–F17) Complex problems (F18–F20) Overall results

BPSO #BMF (#GO) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
%Improve – – – – –

PSO-ITC1 #BMF (#GO) 8 (7) 3 (3) 1 (1) 0 (0) 12 (11)
%Improve 98.0668 89.9635 99.9132 98.7273 96.5093

PSO-ITC2 #BMF (#GO) 7 (7) 3 (3) 1 (1) 1 (0) 12 (11)
%Improve 97.6837 91.3234 100.0000 99.5629 96.8457

PSO-ITC3 #BMF (#GO) 7 (7) 4 (4) 1 (1) 0 (0) 12 (12)
%Improve 98.0565 91.4455 99.8533 98.5780 96.8413

PSO-ITC #BMF (#GO) 7 (7) 5 (4) 4 (1) 2 (0) 18 (12)
%Improve 97.4250 91.9385 100.0000 99.6095 96.8891

Fig. 11. Mean computation time in CPU cycle (in seconds) for 50-D functions
(a) F1–F10. (b) Mean computation time in CPU cycle (in seconds) for 50-D functions
(b) F11–F20.
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As reported in Table 5, the performance of all PSO-ITC variants
improved significantly compared with that of BPSO, which implies
that any strategy, that is, ITC module, NS operator, or EBLS, indeed
helps to enhance the algorithm's searching accuracy. Among all
these PSO-ITC variants, the complete PSO-ITC achieves the largest
average %Improve value, followed by PSO-ITC2, PSO-ITC3, and
PSO-ITC1.

Specifically, Table 5 shows that PSO-ITC1 exhibits the least
improvement, as it is only able to successfully solve seven (out of
eight) conventional problems. The searching accuracy of PSO-ITC1
deteriorates when it is employed to solve rotated, shifted, and
complex problems. This deterioration implies that the ITC module
alone is insufficient to help the particles to escape from the local
minima in other classes of problems. In contrast, the performance
of PSO-ITC2 and PSO-ITC3 is good in shifted and rotated problems,
respectively. We speculate that the combination of ITC module
and EBLS is more effective in tracking the shifted global optima,
whereas the combination of ITC module and NS operator plays a
major role in solving non-separable problems. However, the
performance of these two variants in complex problems (F18–
F20) is still unsatisfactory, which implies that the combination of
ITC module with any of the NS or EBLS strategies is still insufficient
in handling problems with a more complex fitness landscape.
Finally, we observe that the complete PSO-ITC outperforms the
other improved variants in all types of problems. Specifically, it
successfully achieves seven (out of eight), five (out of five), four
(out of four), and two (out of three) best Fmean values in the
conventional, rotated, shifted, and complex problems, respectively.
Such an observation is reasonable, as the integration of ITC module
with EBLS and NS operator is sufficient for solving the shifted and
rotated problems, respectively. The superior performance of the
complete PSO-ITC in all tested problems implies that the afore-
mentioned strategies are integrated effectively. None of the con-
tributions of the aforementioned strategies is compromised when
the PSO-ITC is used to solve different types of problems.

4.8. Comparison with other state-of-the-art metaheuristic search
algorithms

In this section, we compare the proposed PSO-ITC with some
cutting-edge metaheuristic search (MS) algorithms, as these MS
algorithms are capable of solving optimization problems. Specifically,

we compare our PSO-ITC with real-coded chemical reaction optimi-
zation (RCCRO) (Lam et al., 2012), differential evolution with strategy
adaption (SaDE) (Qin et al., 2009), orthogonal learning-based artifi-
cial bee colony (OCABC) (Gao et al., 2013), group search optimizer
(GSO) (He et al., 2009), real-coded biogeography-based optimization
(RCBBO) (Gong et al., 2010), and covariance matrix adaptation
evolution strategy (CMAES) (Hansen and Ostermeier, 2001). RCCO
is a real-coded version of the chemical reaction optimization (Lam
and Li, 2010) that was developed based on an analogy to a chemical
reaction. SaDE is an improved variant of the differential evolution
(DE) (Storn and Price, 1997). OCABC employs orthogonal learning
into the artificial bee colony (ABC) to achieve better searching
performance. The development of GSO is motivated by an animal's
searching behavior, i.e., the producer–scrounger (PS) model. RCBBO is
the real-coded version of biogeography-based optimization (Simon,
2008), inspired by the geographical distribution of biological organ-
isms. The CMAES is an improved evolutionary strategy (Beyer and
Schwefel, 2002) with the restart and increasing population size
mechanism.

To compare the proposed PSO-ITC with the aforementioned MS
algorithms, we simulate various 30 dimensional conventional
problems and summarize the Fmean values produced by all the
algorithms in Table 6. All the results of the compared MS
algorithms are extracted from their corresponding literature. Thus,
we assign the Fmean value as “NA” if the algorithm's Fmean value for
a particular benchmark is not available in its original literature.
Table 6 shows that PSO-ITC has the most superior searching
accuracy as it successfully solves almost all tested functions.
Specifically, the PSO-ITC locates the global optima of eight out of
10 problems, that is, two times better than the second ranked
OCABC. Also, the PSO-ITC is the only algorithm to find the global
optima for Sphere, Schwefel 2.22, Schwefel 1.2, Schewefel 2.21,
and Ackley functions.

4.9. Comparative study on two real-world engineering design
problems

In this section, we study the feasibility of the proposed PSO-ITC
in engineering applications. More precisely, we investigate the
performance of the PSO-ITC over two real-world engineering
design problems, namely (1) the gear train design problem
(Sandgren, 1990) and (2) the spread spectrum radar polyphase

Table 6
Comparison of the PSO-ITC with other state-of-the art MS algorithms in 30-D problems.

Function RCCRO SaDE OCABC GSO RCBBO CMAES PSO-ITC

Sphere Fmean 6.43E�07 3.28E�20 4.32E�43 1.95E�08 1.39E�03 6.09E�29 0.00Eþ00
SD (2.09E�07) (3.63E�20) (8.16E�43) (1.16E�08) (5.50E�04) (1.55E�29) (0.00Eþ0.0)

Schwefel 2.22 Fmean 2.19E�03 3.51E�25 1.17E�22 3.70E�05 7.99E�02 3.48E�14 0.00Eþ00
SD (4.34E�04) (2.74E�25) (7.13E�23) (8.62E�05) (1.44E�02) (4.03E�15) (0.00Eþ0.0)

Schwefel 1.2 Fmean 2.97E�07 NA NA 5.78Eþ00 2.27Eþ01 1.51E�26 0.00Eþ00
SD (1.15E�07) (3.68Eþ00) (1.03Eþ01) (3.64E�27) (0.00Eþ0.0)

Schwefel 2.21 Fmean 9.32E�03 NA 5.67E�01 1.08E�01 3.09E�02 3.99E�15 0.00Eþ00
SD (3.66E�03) (2.73E�01) (3.99E�02) (7.27E�03) (5.31E�16) (0.00Eþ0.0)

Rosenbrock Fmean 2.71Eþ01 2.10Eþ01 7.89E�01 4.98Eþ01 5.54Eþ01 5.58E�01 2.55Eþ01
SD (3.43Eþ01) (7.8Eþ00) (6.27E�01) (3.02Eþ01) (3.52Eþ01) (1.39Eþ00) (1.35Eþ00)

Step Fmean 0.00Eþ00 5.07Eþ01 0.00Eþ00 1.60E�02 0.00Eþ00 7.00E�02 0.00Eþ00
SD (0.00Eþ00) (1.34Eþ01) (0.00Eþ00) (1.33E�01) (0.00Eþ00) (2.93E�01) (0.00Eþ0.0)

Quartic Fmean 5.41E�03 4.86E�03 4.39E�03 7.38E�02 1.75E�02 2.21E�01 1.43Eþ01
SD (2.99E�03) (5.21E�04) (2.03E�03) (9.26E�02) (6.43E�03) (8.65E�02) (1.76Eþ01)

Rastrigin Fmean 9.08E�04 2.43Eþ00 0.00Eþ00 1.02Eþ00 2.62E�02 4.95Eþ01 0.00Eþ00
SD (2.88E�04) (1.60Eþ00) (0.00Eþ00) (9.51E�01) (9.76E�03) (1.23Eþ01) (0.00Eþ0.0)

Ackley Fmean 1.94E�03 3.81E�06 5.32E�15 2.66E�05 2.51E�02 4.61Eþ00 0.00Eþ00
SD (4.19E�04) (8.26E�07) (1.82E�15) (3.08E�05) (5.51E�03) (8.73Eþ00) (0.00Eþ0.0)

Grienwank Fmean 1.12E�02 2.52E�09 0.00Eþ00 3.08E�02 4.82E�01 7.40E�04 0.00Eþ00
SD (1.62E�02) (1.24E�08) (0.00Eþ00) (3.09E�02) (8.49E�02) (2.39E�03) (0.00Eþ0.0)

w/t/l 8/1/1 6/0/2 4/3/2 9/0/1 8/1/1 8/0/2
#BMF 1 0 4 0 1 1 8
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code design problem (Das and Suganthan, 2010). The descriptions
and mathematical models of these two engineering design pro-
blems are presented in the following subsections.

4.9.1. Gear train design problem
The gear train design problem aims to optimize the gear ratio

for a compound gear train that contains three gears. The objective
function of this problem is represented as (Sandgren, 1990)

f ðxÞ ¼ 1
6:931

�x1x2
x3x4

� �2

ð9Þ

where xiA ½12;60�, i¼1, 2, 3, 4. As shown in Eq. (9), the gear ratio
must be as close as possible to 1/6.931 to minimize the cost of gear
ratio in the gear train. The bound constraint of this problem
restricts the number of teeth of each gear in the range of 12–60.

4.9.2. Spread spectrum radar polyphase code design problem
The spread spectrum radar polyphase code design problem

plays an important role in the radar system design. This problem
has no polynomial time solution, and its formal statement is
defined as follows (Das and Suganthan, 2010):

Global min f ðxÞ ¼ max fφ1ðXÞ;…;φ2mðXÞg ð10Þ
where X ¼ fðx1;…; xDÞARDj0rxjr2πg and m¼ 2D�1, with

φ2i�1ðXÞ ¼ ∑
D

j ¼ i
cos ∑

j

k ¼ j2i� j�1j�1
xk

 !
; i¼ 1;2;…;D

φ2iðXÞ ¼ 0:5þ ∑
D

j ¼ iþ1
cos ∑

j

k ¼ j2i� j�1j�1
xk

 !
; i¼ 1;2;…;D�1

φmþ iðXÞ ¼ �φiðXÞ; i¼ 1;2;…;m ð11Þ

4.9.3. Experimental settings for the two real-world engineering
design problems

In this study, all the 10 PSO variants employed in the previous
experiment are tested in these two engineering design problems.
The parameter settings of each algorithm remain the same as in
the previous experiment. For the gear train design problem, the
population size (S) and the maximum fitness evaluation numbers
(FEmax) are set to 10 and 3.00Eþ04, respectively. Meanwhile, we

consider the spread spectrum radar polyphase code design pro-
blem for D¼20. The S and FEmax of this problem are set to 20 and
2.00Eþ05, respectively. The experimental settings for these two
problems are summarized in Table 7.

4.9.4. Simulation results of the two real-world engineering design
problems

The simulation results over 30 independent runs for the gear
train design and spread spectrum radar polyphase design pro-
blems are presented in Table 8, which contains the values of mean
fitness (Fmean), standard deviation (SD), t-test's result (h), and
mean computational time (tmean).

For the gear train design problem, almost all PSO variants
exhibit excellent searching accuracy, except for the BPSO. Among
these PSO variants, our proposed PSO-ITC achieves the third best
Fmean value, that is, its searching accuracy in solving the gear train
design problem outperforms seven other peers, namely APSO,
FPSO, FIPSO, OLPSO-L, HPSO-TVAC, RPPSO, and BPSO. Although the
Fmean value produced by the PSO-ITC in the gear train design
problem is slightly inferior to that of FLPSP-QIW and FlexiPSO, the
former is at least two times more superior to the latter two in
terms of computational overhead (represented by tmean). Mean-
while, all involved PSO variants have a similar searching accuracy
in tackling the spread spectrum radar polyphase design problem,
as the produced Fmean values are relatively similar. As shown in
Table 8, the searching accuracy exhibited by the PSO-ITC in this
problem is competitive because it achieves the third best Fmean

values. In terms of searching accuracy, the performance deviation
between the PSO-ITC (i.e., Fmean¼1.10Eþ00) and the first-ranked
FLPSO-QIW (i.e., Fmean¼1.02Eþ00) is relatively insignificant, as the
latter is only 1.08 times better than the former. On the other hand,
the mean computational time required by our proposed PSO-ITC
(i.e., tmean¼2.66Eþ02 s) to solve the spread spectrum radar poly-
phase design problem is significantly less than that of FLPSO-QIW
(i.e., tmean¼9.63Eþ02 s). More precisely, the proposed PSO-ITC is
3.62 times better than the FLPSO-QIW in terms of computational
overhead. Based on the simulation results in Table 8, we conclude
that our proposed PSO-ITC achieves a better trade-off between the
produced Fmean and the tmean values compared with its peers. The
prominent performance of the PSO-ITC in terms of searching
accuracy and computational overhead proves that its application
is indeed feasible in real-world engineering problems.

4.10. Discussion

The simulation results of the benchmark and real-world
problems indicate that our proposed PSO-ITC has superior search-
ing accuracy, searching reliability, and convergence speed com-
pared with the other nine well-established PSO variants and six

Table 8
Comparison between two real-world engineering design problems.

Algorithm Gear train design Spread spectrum radar polyphase design

Fmean7SD h tmean (s) Fmean7SD h tmean (s)

APSO 1.28E�0871.70E�08 þ 1.11Eþ02 1.33Eþ0071.92E�01 þ 4.96Eþ02
FLPSO�QIW 3.34E�1075.78E�10 � 1.17Eþ02 1.02Eþ0076.88E�02 � 9.63Eþ02
FlexiPSO 2.36E�0975.78E�10 � 9.24Eþ01 1.22Eþ0072.48E�01 þ 2.55Eþ02
FPSO 7.48E�0772.43E�06 ¼ 9.21Eþ01 1.13Eþ0071.30E�01 þ 2.48Eþ02
FIPSO 5.59E�0979.39E�09 ¼ 9.14Eþ01 1.04Eþ0071.47E�01 � 2.75Eþ02
OLPSO-L 6.74E�0971.25E�08 þ 3.83Eþ01 1.27Eþ0071.97E�01 þ 1.80Eþ02
HPSO-TVAC 1.90E�0873.70E�08 ¼ 9.16Eþ01 1.21Eþ0071.94E�01 þ 3.68Eþ02
RPPSO 2.43E�0773.79E�07 þ 9.16Eþ01 1.10Eþ0071.73E�01 ¼ 5.03Eþ02
BPSO 1.04E�0475.67E�04 ¼ 6.31Eþ01 1.21Eþ0071.70E�01 þ 3.62Eþ02
PSO-ITC 4.25E�0974.55E�09 4.15Eþ01 1.10Eþ0071.23E�01 2.66Eþ02

Table 7
Experimental settings for the two real-world engineering design problems.

Parameters Gear train design Spread spectrum radar polyphase design

D 4 20
S 10 20
FEmax 3.00Eþ04 2.00Eþ05

W.H. Lim, N.A. Mat Isa / Engineering Applications of Artificial Intelligence 27 (2014) 80–10296



Fig. A1. Convergence curves of 50 dimensional problems: (a) F1 Sphere, (b) F2 Schwefel 1.2, (c) F3 Rosenbrock, (d) F4 Rastrigin, (e) F5 Noncontinuous Rastrigin, and
(f) Griewank functions. Convergence curves of 50 dimensional problems: (g) F7 Ackley, (h) F8 Weierstrass, (i) F9 Rotated Sphere, (j) F10 Rotated Schwefel 1.2, (k) F11 Rotated
Rosenbrock, and (l) F12 Rotated Rastrigin functions. Convergence curves of 50 dimensional problems: (m) F13 Rotated Griewank, (n) F14 Shifted Sphere, (o) F15 Shifted
Rastrigin, (p) F16 Shifted Noncontinuous Rastrigin, (q) F17 Shifted Griewank, and (r) F18 Rotated Shifted Griewank functions. Convergence curves of 50 dimensional
problems: (s) F19 Shifted Rotated High Conditioned Elliptic and (t) F20 Shifted Expanded Griewank Rosenbrock functions.
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cutting-edge MS algorithms. The excellent performance of PSO-ITC
is attributed to the two major contributions proposed in our work,
namely the ITC module and the proposed learning framework. The
ITC module aims to achieve better control of the exploitation/
exploration searches of PSO-ITC particles by linearly increasing the
particle's connectivity with time. The linearly increasing scheme is
adopted in the ITC module as early studies (Kennedy, 1999;
Kennedy and Mendes, 2002; Shi and Eberhart, 1998) revealed that
particles at the early stage of optimization need to perform more
exploration, which makes small topological connectivity prefer-
able. At the later stage of optimization, particles should exploit the
most promising explored region, which requires large topological
connectivity. To prevent particle stagnation in the local optima, a
shuffling mechanism is incorporated in the ITC module to offer a
new searching direction for the particle if it fails to improve the
global best fitness for z successive FEs.

The proposed learning framework consists of a new velocity
update mechanism and a new NS operator. For the new velocity
update mechanism, two exemplars of cexp,i and sexp,i are generated to
update the velocity of particle i. Both exemplars are generated from
particle i's neighborhood through the roulette wheel selection to
ensure that good quality exemplars are employed to guide particle i
to a more prominent search space. If particle i fails to improve its
personal best fitness when evolved through the new velocity update
mechanism, the NS operator is triggered. In the NS operator, another
exemplar, the oexp,i exemplar, is used to further evolve particle i.
Unlike the cexp,i and sexp,i exemplars, the oexp,i exemplar is derived
from the cguide,i and sguide,i guidance particles contributed by another
particle's neighborhood. This mechanism establishes information
exchange between the different neighborhoods that exist in the
population, thereby allowing particle i to locate potentially better
unexplored regions based on the useful information provided by
other neighborhoods. In addition, when the particle is evolved
through the new velocity update mechanism or the new NS operator,
the particle can be attracted towards or repelled from its exemplar
depending on its exemplars’ fitness. This mechanism automatically
assigns different search tasks (i.e., exploration and exploitation) to
different particles in the population, thereby resolving the explora-
tion/exploitation balancing issue.

Although the proposed PSO-ITC exhibited superior performance in
the previously reported experiments, it is applicable only to uncon-
strained single-objective (SO) problems with continuous search space.
More work needs to be done to further extend the applicability of the

proposed PSO-ITC to a more general class of optimization problems,
including those with discrete and mixed search spaces as well as
multiple-objective (MO) problems. For example, MO problems have a
rather different perspective compared with SO problems because the
former contains more than one objective that needs to be achieved
simultaneously. Also, unlike SO problems which consist of only one
global optimum, a set of solutions, namely the Pareto-optima set, are
considered equally important in MO problems. In general, two main
aspects need to be considered to adapt the proposed PSO-ITC for MO
problems. First, the PSO-ITC needs to guide solutions toward the
Pareto-frontier by employing strategies, such as Pareto-ranking or
Pareto-sorting (Fonseca and Fleming, 1995). Second, some mechan-
isms, such as sharing or niche methods (Fonseca and Fleming, 1995),
need to be incorporated in the PSO-ITC to ensure that a set of well-
distributed solutions are generated across the Pareto-frontier. For more
discussions of the extension of an optimization algorithm to facilitate
its application in a more general class of optimization problems, refer
Page et al. (2012).

In this paper, our main suggestion is to explore the possible
benefits of combining the ITC module with the proposed learning
framework in the context of PSO algorithms in solving the uncon-
strained SO optimization problem with continuous search space.
Extensive experimental results obtained from our current study prove
that the combination of the ITC module and the proposed learning
strategy significantly enhances the searching performance of PSO in
the aforementioned search space. In our future works, we will extend
the applicability of PSO-ITC to a diverse class of optimization problems,
such as discrete, mixed, and multi-objective search spaces.

5. Conclusion

In this paper, the PSO-ITC is proposed to solve unconstrained
SO optimization problems with continuous search space. The ITC
module is developed to vary the particle's topology connecti-
vity during processing, thereby achieving better balance of the
exploration/exploitation searches. In addition, a new learning
framework, which consists of a new velocity update mechanism
and a new NS operator, is incorporated into the PSO-ITC. Both
aforementioned strategies aim to improve the searching accuracy
of the algorithm by generating the more promising exemplars as
the guidance particles. The simulation results reveal that the
proposed PSO-ITC significantly outperforms its peers in terms of
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searching accuracy, searching reliability, and computation cost.
This superior performance implies that the increasing topology
approach and the new learning framework are promising ways of
enhancing the searching performance of PSO.
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