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Ant  colony  optimization  (ACO)  is  a well-known  swarm  intelligence  method,  inspired  in  the social  behav-
ior of ant  colonies  for  solving  optimization  problems.  When  facing  large  and  complex  problem  instances,
parallel  computing  techniques  are  usually  applied  to improve  the  efficiency,  allowing  ACO  algorithms
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to  achieve  high  quality  results  in  reasonable  execution  times,  even  when  tackling  hard-to-solve  opti-
mization  problems.  This  work  introduces  a new  taxonomy  for classifying  software-based  parallel  ACO
algorithms and also  presents  a systematic  and  comprehensive  survey  of  the  current  state-of-the-art  on
parallel  ACO  implementations.  Each  parallel  model  reviewed  is  categorized  in  the  new  taxonomy  pro-
posed,  and  an  insight  on  trends  and  perspectives  in the  field  of  parallel  ACO  implementations  is provided.
axonomy

. Introduction

In the last twenty years, the research community has been
earching for new optimization techniques that are able to improve
ver the traditional exact ones, whose large computational require-
ents often make them useless for solving complex real-life

ptimization problems in acceptable times. In this context, nature-
nspired metaheuristic methods have emerged as flexible and
obust tools for solving NP-hard optimization problems, exploiting
heir ability to compute accurate solutions in moderate execu-
ion times [13,49]. Ant colony optimization (ACO) is a swarm
ntelligence population-based metaheuristic inspired in the social
ehavior of ant colonies, which applies the key concepts of
istributed collaboration, self-organization, adaptation, and dis-
ribution found in ant communities, in order to efficiently solve
eal-life optimization problems [41].

Parallel implementations became popular in the last decade in
rder to improve the efficiency of population-based metaheuristics.
y splitting the population into several processing elements, paral-

el implementations of metaheuristics allow reaching high quality
esults in a reasonable execution time, even when facing hard-to-
olve optimization problems [2]. Parallel algorithms not only take
enefit of using several computing elements to speed up the search,
hey also introduce a new exploration pattern that is often useful to
mprove over the result quality of the sequential implementations.
Many papers can be found in the related literature stating that
arallel implementations are useful to improve the ACO explo-
ation pattern; Fig. 1 shows the number of publications per year
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in this area. However, researchers often lack a generalized point of
view, since they usually tackle a unique implementation to solve a
specific problem.

Dorigo [39,40] first suggested the application of parallel com-
puting techniques to enhance both the ACO search and its
computational efficiency, while Randall and Lewis [84] proposed
the first classification of ACO parallelization strategies. The book
chapter by Janson et al. [57] and the article by Ellabib et al. [46] are
the only previous works that have collected bibliography of pub-
lished papers proposing parallel ACO implementations. Janson et al.
reviewed parallel ACO proposals published up to 2002, focusing on
comparing “parallelized” standard ACO algorithms, specific paral-
lel ACO methods, and hardware parallelization; although they did
not include an explicit algorithmic taxonomy. Ellabib et al. briefly
commented parallel ACO implementations up to 2004, focusing in
describing the applications, and they only distinguished between
coarse-grain and fine-grain models for parallel ACO.

The classic proposals of parallel ACOs focused on traditional
supercomputers and clusters of workstations. Nowadays, the novel
emergent parallel computing architectures such as multicore pro-
cessors, graphics processing units (GPUs), and grid environments
provide new opportunities to apply parallel computing techniques
to improve the ACO search results and to lower the required com-
putation times.

In this line of work, the main contributions of this article are:
(i) to introduce a new taxonomy to classify software-based paral-
lel ACO algorithms, (ii) to present a systematic and comprehensive
survey of the current state-of-the-art on parallel ACO implemen-

tations, and (iii) to provide an insight of the current trends and
perspectives in the field. The survey focuses mainly on the parallel
models, addressing the principal characteristics of each proposal,
the experimental analysis – including the optimization problems

dx.doi.org/10.1016/j.asoc.2011.05.042
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:sergion@fing.edu.uy
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Fig. 1. Number of rev

aced, the test cases and the parallel platform used in the exper-
ments, and the reported results –, and the main contributions of
he reviewed works. Each parallel ACO proposal is categorized in
he new taxonomy proposed.

The manuscript is structured as follows. Next section describes
he research methodology used in the review. Section 3 describes
he main features of the ACO technique and briefly introduces the

ost popular ACO variants. Section 4 presents the generic concepts
f the strategies for ACO parallelization and comments previous
lassification criteria. It also describes the new taxonomy proposed
n this work to categorize parallel ACOs. Section 5 reviews the pre-
ious work on parallel ACO implementations and categorizes each
roposal using the new taxonomy. A comparative analysis regard-

ng the computational efficiency and quality of results is offered in
ection 6. Section 7 presents the trends and perspectives in the field
f parallel ACO implementations, before stating the conclusions of
he survey in Section 8.

. Methodology

The research methodology used in the review involved search-
ng and reviewing papers from soft computing/computational
ntelligence conferences, journals, and books, where the applica-
ion of parallel processing techniques to ACO have been proposed.

.1. Sources and search methods

A comprehensive search was performed in conferences, jour-
als and books about metaheuristics and parallelism. The databases
earched in this study include ScienceDirect, Scopus, Thomson
euters (formerly ISI) Web  of Knowledge, ACM Digital Library,

EEE Explore, Elsevier, SpringerLink, Citeseer, as well as many oth-
rs Open Access Publishing databases. The reviewed papers come
ut from leading conferences and journals about soft computing,
uch as International Conference on Parallel Problem Solving from
ature, Conference on Genetic and Evolutionary Computation,
onference on Evolutionary Computation, Journal of Heuristics,

nformation Sciences, Lecture Notes in Computing Science, IEEE
ransactions on Evolutionary Computation, Applied Soft Comput-
ng, Future Generation Computer Systems, and Journal of Artificial
ntelligence Research, among others.

The search of related papers in specific databases was  done using
 group of keywords that include ant colony optimization, paral-

el, distributed, parallelism, and soft computing. Additionally, the
eference section of each paper found was reviewed to locate addi-
ional studies of interest. As a result, the final references consist
f 69 papers: 19 published in journals, 44 in referred conferences,
 publications by year.

3  in books, and 3 M.Sc./Ph.D thesis. The analysis of related works
was mainly focused on the features of the parallel models, describ-
ing the distinctive characteristics of each parallel ACO proposal,
the optimization problem tackled, the test cases and the parallel
platform used in the experiments, and the efficiency and quality
results reported. Each parallel ACO proposal is categorized in the
new taxonomy proposed in this work. In order to study the recent
contributions about parallel ant colony optimization, those papers
published in the last five years (2005–2010) were further studied
to analyze the main trends and perspectives about parallel ACO
implementations.

2.2. Scope

The review focuses in papers that have proposed explicitly par-
allel implementations of ACO, disregarding those proposals using
implicit parallelism or a distributed-agent-based search. A com-
plete description of the implicit-parallel and other ACO categories
that have been left apart from the review are summarized in Section
4.3.

The reviewed works face optimization problems from a large
spectrum of application domains. Only single-objective, static opti-
mization problems are covered in this survey, since they are the
large class of problems frequently solved using parallel ACO. The
algorithmic structure of ACO to solve multi-objective and dynamic
optimization problems is different to the traditional ACO algorithm,
so they have not been included in the scope of this review

3. Ant colony optimization

Ant Colony Optimization [45] is a population-based meta-
heuristic for solving optimization problems, originally proposed
by Dorigo and Di Caro [41]. ACO uses artificial ants to construct
solutions by incrementally adding components that are chosen
considering heuristic information of the problem and pheromone
trails that reflect the acquired search experience.

Algorithm 1 presents the skeleton of an ACO algorithm applied
to a combinatorial optimization problem for minimizing one objec-
tive function. At first, the ACO sets the initial pheromone trails
values (T) and the heuristic value of the solution components
(H, known as visibility). After that, the algorithm iterates until a
given stop condition is reached. Every iteration step is divided
in four stages. First, each ant of the colony concurrently, inde-

pendently, and asynchronously constructs a solution by selecting
components using a probabilistic rule that considers both the expe-
rience acquired during the search (through the trace of pheromone
deposited) and heuristic information of the considered components
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through the visibility). The next stage optionally applies a local
earch method to improve the solutions. In the third stage, the
heromone trails are updated: the trace values are decreased by
vaporation and increased by depositing pheromone in the compo-
ents used to construct solutions; the net change in the pheromone
alue depends on the contributions of these two update processes.
inally, in the last stage, the best solution found since the start of
he algorithm (the best-so-far solution) is updated if a better solu-
ion has been found. ACO returns the best-so-far solution, when the
top criteria is accomplished.

lgorithm 1.

ACO applied to a static combinatorial optimization problem

T = initializePheromoneTrails()

H = initilizeVisibilities()

sbest= s | f(s) = + ∞
While not stopCriteria () do
pop = constructAntsSolutions(T,H)

pop’ = applyLocalSearch(pop) % optional

T  = updatePheromones(T,pop’)

s = selectBestOfPopulation(pop’)

iff(s) < f (sbest)then % update best-so-far solution

sbest = s

end if
end while
return sbest

The scientific community has proposed multiple variants that
nstantiate the general scheme shown in Algorithm 1. Some of the

ost popular variants include:

Ant System (AS) [44], the classic method that uses a random pro-
portional state transition rule, while the pheromone is deposited
by all ants proportionally to their solution quality and is evapo-
rated in all the components.
Ant Colony System (ACS) [43], which employs a pseudo-random
state transition rule, and the pheromone is only deposited and
evaporated on the components of the best solution. ACS incorpo-
rates a local pheromone update during the solution construction,
allowing the exploration of unused components.
MAX  − MIN Ant System (MMAS) [91] that includes explicit
lower and upper limits on the pheromone, which is only
deposited on the components of the best solution.

ACO methods have also been proposed for solving multi-
bjective and dynamic optimization problems. However, these
ethods have particular features (such as Pareto-based evaluation

f solutions, elite populations or colonies, alternative pheromone
pdating and evaporation rules, multiple pheromones, etc.) that
ake them different from the traditional ACO schema presented

n Algorithm 1, so they have not been included in the scope of this
eview.

. ACO parallelization strategies

The systematic study of the application of parallel computing
echniques to ACO algorithms is recent. Several authors agree that
xhaustive work still needs to be done in this subject [45,57].
here are few articles that specifically discuss possible strate-
ies to implement parallel ACO; and no recent work features

 complete state-of-the-art review on this subject. This section
riefly introduces the metrics to evaluate the performance of par-
llel algorithms, which will be used in the literature review in
ection 5. Later, it presents different strategies to implement par-

llel ACO algorithms. The currently proposed classifications for
oftware-based parallel ACO are discussed before introducing a
ew taxonomy, which aims to extend the previous ones and to
vercome some of their shortcomings and omissions.
puting 11 (2011) 5181–5197 5183

4.1. Parallel performance metrics

Several metrics have been proposed to evaluate the perfor-
mance of parallel algorithms. The most common metrics used by
the research community are the speedup and the efficiency. The
speedup evaluates how much faster a parallel algorithm is than a
corresponding sequential algorithm, and it is computed as the ratio
between the execution time of the sequential algorithm (T1) and
the execution time of the parallel version using m processors (Tm)
(Eq. (1)). When evaluating the performance of non-deterministic
algorithms, the speedup should compare the mean values of the
sequential and parallel execution times (Eq. (2)) [1]. The previous
definition allows distinguishing among sublinear speedup (Sm < m),
linear speedup (Sm = m),  and superlinear speedup (Sm > m). The ideal
case for a parallel algorithm is to achieve linear speedup, although
the most common situation is to achieve sublinear speedup values
due to the times required to communicate and synchronize the par-
allel processes. When linear or almost-linear speedup is achieved,
the parallel algorithm is said to have a good scalability behavior (i.e.
the time required to perform it diminishes proportionally with the
number of processing elements used). The computational efficiency
(simply named efficiency) is the normalized value of the speedup,
regarding the number of processors used to execute a parallel algo-
rithm (Eq. (3)). The efficiency metric allows to compare different
algorithms, eventually executed in non-identical computing plat-
forms. The linear speedup corresponds to em = 1, and in the most
common situations em < 1.

Sm = T1

Tm
(1)

Sm = E[T1]
E[Tm]

(2)

em = Sm

m
(3)

According to the Amdahl’s law [10], the performance of any par-
allel application is limited by the sequential part of the code, that
depends on the choice of the parallelization strategy. Amdahl’s law
can be used in parallel computing to predict the theoretical maxi-
mum  speedup when using multiple computing resources. Far away
from a pessimistic view of parallel computing, the Gustafson’s Law
[52] indicates that parallel implementation are useful for solving
larger problem instances in a reasonable amount of time, while
achieving almost linear speedup values. In fact, in the optimiza-
tion field, parallel implementations of metaheuristics are known to
been able to efficiently solve hard problems, even achieving super-
linear (Sm > m) in some specific situations, by taking advantage of
particular hardware or algorithmic design issues [7].

4.2. Previous parallel ACO classifications

Although the research community has proposed many par-
allel ACO implementations, there do not exist standardized
taxonomies for classifying the parallelization strategies applied
to ACO. Researchers usually merely present one or a few paral-
lel ACO implementations, but they often do not put much effort
in following a methodology to systematically categorize the paral-
lel approaches. The most usual criterion when classifying parallel
ACO simply distinguishes two  wide categories: fine-grained and
coarse-grained models [46], also called ant-based and colony-based
models [76].

The proposal by Randall and Lewis in 2002 [84] has been

the unique attempt to provide a classification of parallel
ACO approaches. This categorization distinguished five parallel
ACO models. Three of them used a hierarchical master-slave
paradigm and the other two categories follow an indepen-
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ent executions model and a synchronous cooperative model,
espectively.

Several aspects to consider when implementing parallel ACO
lgorithms were discussed by Janson et al. [57]. The work did not
rovide a comprehensive taxonomy, but used two  criteria to clas-
ify parallel ACOs. The first criterion differentiates “parallelized”
tandard ACO, designed to decrease the execution time without
hanging the sequential algorithmic model, and specifically designed
arallel ACO, aimed at improving the results quality and the compu-
ational efficiency, following a different algorithmic behavior. The
econd criterion distinguishes between centralized and decentral-
zed parallel ACO models, regarding whether a central process that
ollects both the solutions and the pheromone information exists
r not.

Other high-level taxonomies for parallel metaheuristics have
een sporadically used to classify parallel ACO approaches. The par-
llel metaheuristics classification by Crainic and Nourredine [28]
istinguishes three categorization levels, regarding the search con-
rol cardinality, control and communications, and differentiation;
ut it is a generic classification that has not gained popularity.
n the taxonomy for parallel metaheuristics by Talbi [92], three
ierarchical levels (algorithmic, iteration, and solution) are used
o classify parallel implementations of metaheuristics, regarding
he granularity of the parallel approach. The parallel ACO model
hat uses several colonies is introduced as an example of algo-
ithmic level parallelization, but other models for parallel ACO do
ot get a mention. Another approach by Cung et al. [31] iden-
ified the single walk and the multiple walk – with independent
nd cooperative search threads – parallel strategies of metaheuris-
ics. Up to now, this classification has been only used in the
urvey of pioneering parallel ACO proposals presented in that
ame paper.

The research on parallel metaheuristics has significantly
dvanced in the last decade, thus the taxonomy presented by
andall and Lewis in 2002 is no longer accurate to describe and
lassify the parallel ACO models proposed by the research com-
unity. Only ten proposals of parallel ACO implementations were

roposed up to 2002, and the bulk of works about parallel ACO
as been done in the period from 2005 to 2010, so a new taxon-
my  is required to capture the main features of nowadays parallel
CO proposals. On the other hand, the generic classifications for
arallel metaheuristics have not been proposed to consider the
CO features, and they often provide an abstract view that do not
elp to understand the specific details of parallel ACO. To over-
ome this lack of a standardized taxonomy for the classification
f parallel ACO algorithms, this work introduces a new taxonomy
or software-based parallel ACO, conceived to take into account
he particular features of all the proposed strategies for ACO
arallelization.

Next subsection presents the proposal of a comprehensive and
pecific new taxonomy for categorizing parallel ACO implementa-
ions.

.3. A new taxonomy for parallel ACO

This subsection presents a new taxonomic proposal for paral-
el ACO algorithms. The categorization takes some basic concepts
dentified by Randall and Lewis [84], but it expands the classifi-
ation in order to introduce some missing categories, to extend
ther ones, and also to include general ideas from the work by Jan-
on et al. [57] and from the evolutionary algorithms literature. Two
ain criteria related to the population organization are used to dis-
riminate the categories in the taxonomy: the number of colonies
nd the cooperation. The amount of work that is performed in par-
llel is used to refine the classification within the master-slave
ategory.
puting 11 (2011) 5181–5197

The main contributions of the new taxonomy, which have not
been proposed in previous attempts to classify parallel ACO imple-
mentations, are:

• Three subcategories were included in the master-slave model,
regarding the amount of work that is performed in parallel:
coarse-grain, medium-grain, and fine-grain. The medium-grain
master-slave is an original problem decomposition-based new
category that includes those works that apply a hierarchical
master-slave model using a domain decomposition approach
[36,38,76].

• A new cellular model category – where a single colony is struc-
tured in small neighborhoods with limited interactions– is
included, based on the similar class found in the most widely
accepted taxonomies of parallel evolutionary algorithms [7,17].
This model does not appear in previous parallel ACO classifi-
cations, and one implementation of this new model has been
recently proposed [78].

• A wider category – far more comprehensive than those previously
used in other taxonomies – was adopted for cooperative parallel
ACO methods that use more than one colony (the multicolony
model). This category allows grouping a larger number of parallel
ACO proposals than other previously defined multicolony classes.

• The taxonomy also incorporates a category including hybrid
models, which comprehends those proposals that feature char-
acteristics of more than one parallel model.

The full proposal of a new taxonomy of strategies for parallel
implementations of ACO includes the following categories:

• Master-slave model.  This category applies a hierarchical parallel
model, where a master process manages the global information
(i.e. pheromone matrix, best-so-far solution, etc.) and it also con-
trols a group of slave processes that perform subordinated tasks,
related to the ACO search space exploration. The model includes
three distinguished subcategories regarding the granularity (i.e.,
the amount of work performed by each slave process):

Coarse-grain master-slave model.  The master manages the
pheromone matrix and the interaction with the slaves is based on
complete solutions. The tasks delegated to the slaves may  corre-
spond to one or more ants, and they comprise building, improving
and/or evaluating one or more full solutions, and communicating
back the result to the master. This subcategory is more compre-
hensive than the parallel ants model by Randall and Lewis [84],
since it allows grouping several ants in the same slave process.
Medium-grain master-slave model.  A domain decomposition of
the problem is applied. The slave processes solve each subproblem
independently, whereas the master process manages the overall
problem information and constructs a complete solution from the
partial solutions reported by the slaves.
Fine-grain master-slave model.  The slaves perform minimum
granularity tasks, such as processing single components used to
construct solutions, and frequent communications between the
master and the slaves are usually required. The model includes the
parallel evaluation of solution elements category originally proposed
by Randall and Lewis [84], but it also incorporates other proposals
that frequently communicate components or information about
the components.

• Cellular model.  A single colony is structured in small neigh-
borhoods, each one with its own pheromone matrix. Each ant

is placed in a cell in a toroidal grid, and the trail pheromone
update in each matrix considers only the solutions constructed
by the ants in its neighborhood. The model uses overlapping
neighborhoods, so the effect of finding high-quality solutions
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Fig. 2. Main categories in the new taxonomy for parallel ACO.
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gradually spreads to other neighborhoods using the diffusion
model employed in cellular evolutionary algorithms [3,81].
Parallel independent runs model.  Several sequential ACO, using
identical or different parameters, are concurrently executed on a
set of processors. The executions are completely independent,
without communication among the ACOs, therefore the model
does not consider cooperation between colonies.
Multicolony model.  In this model, several colonies explore
the search space using their own pheromone matrices. The
cooperation is achieved by periodically exchanging informa-
tion among the colonies. The parallel interacting ant colonies
model previously defined by Randall and Lewis [84] is a
particular case of multicolony that communicates the full
pheromone matrix among colonies, thus it is comprised in this
category.
Hybrid models. This category includes those proposals that fea-
ture characteristics from more than one parallel model. The
category parallel combination of ants and evaluation of solution
elements by Randall and Lewis [84] is a special case of hybrid
that combines two master-slave models. However, several other
models are also included in this category.

Fig. 2 presents the main categories in the new taxonomy for
arallel ACO, and Fig. 3 shows a hierarchical view of the categories
egarding the criteria considered in the classification.
The proposed taxonomy focuses on explicitly parallel ACO algo-
ithms, disregarding those approaches that use implicit parallelism
r a distributed-agent-based search. The following methods have
een left apart from the categorization:

able 1
haracteristics of the models in the new taxonomy.

Model Population organization # Co

Coarse-grain master-slave Hierarchical, non-cooperative One
Medium-grain master-slave Hierarchical, non-cooperative One
Fine-grain master-slave Hierarchical, non-cooperative One
Cellular Structured, cooperative One
Parallel  independent runs Distributed, non-cooperative Seve
Multicolony Distributed, cooperative Seve
Hybrids Hierarchical D/P 
w taxonomy for parallel ACO.

1. implicit-parallel ACOs: the ACO construction process is inherently
parallel, since ants build solutions in a concurrent and inde-
pendent way. Some ACO variants use inherent parallel features
without a parallel implementation, e.g.: several colonies, each
one with its own pheromone matrix [9,32,53,60]; one colony
with two  types of ants and a single pheromone matrix [61]; and
one colony with several pheromone matrices [12,77],

2. distributed-agent-based ACOs: this kind of (non-parallel) dis-
tributed ACO is usually employed to solve distributed problems
such as dynamic network routing (e.g: AntNet [18]), but they are
not specifically designed to take advantage of parallel computing
architectures,

3. Ant Based Optimization (ABO): despite the name similarity, ABO
has a different behavior than ACO (it uses ants to reduce the
search space by identifying areas that potentially contain a good
solution). Few parallel ABO implementations have been pro-
posed, though a recent paper discussed strategies for parallel
ABO in shared memory computers [15],

4. hardware-parallel ACOs: this kind of ACO implemented in hard-
ware [57,72,88] are platform-dependent (e.g., they depend on
the flow of information between the hardware processing units),
and so their algorithmic behavior differs from the traditional
ACO. Thus, hardware-parallel ACOs are not classifiable in a tax-
onomy for software-based ACO, such as the one proposed in this
work, and they have been also left apart from the categorization.
Table 1 summarizes the main features of the parallel ACO
models identified in the new taxonomy (for the hybrids category,
D/P stands for “depends on the proposal”). The data in Table 1

lonies # Pheromone matrices Communication frequency

 One Medium
 One Medium-high
 One High
 Many Medium
ral Several Zero
ral Several Low

D/P D/P
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orrespond to pure implementations of the models, although the
oundary between some models may  be diffuse. For example, a
oarse-grain master-slave with several ants per slave could use
ocal pheromone matrices at each slave to reduce the communi-
ations, therefore improving the computational efficiency. Such

 coarse-grain master-slave implementation is quite similar to a
ulticolony model in which pheromone matrices are periodically

ynchronized.
The previously presented taxonomy was conceived to compre-

end all the parallel ACO proposals found in the related literature.
he next section reviews the works that have presented parallel
CO implementations and it also classifies each proposal in the
orresponding category of the new taxonomy.

. Categorizing parallel ACO implementations

This section presents a comprehensive review of parallel ACO
roposals in the related literature, describing the main features of
he parallel implementation and the details of the experimental
nalysis. The first subsection introduces the pioneering works on
arallel ACO and the next subsections categorize the works pro-
osed since 1998, following the new taxonomy. When a specific
ork proposes two or more parallel ACO implementations, it is

lassified in the category that corresponds to the method which
btained the best results, regarding both the solution quality and
he performance. Only a single review is included for cellular par-
llel ACO, since this model has been recently presented by two of
he authors of the present work.

.1. Pioneering works

The pioneering works on parallel ACO implementations date
rom the early 1990s. The primary proposals were mostly focused
n investigating the benefits of the available parallel architectures
or speeding up the ACO search. It is hard to classify them in the pro-
osed taxonomy, since the basic concepts on parallel ACO models
ere not formulated at that time.

In his Ph.D. thesis, Dorigo [40] first suggested using a paral-
el version of ACO in order to improve the quality of the search
nd its computational efficiency. The first implementation of a
arallel AS is attributed to Bolondi and Bondaza [14], who pre-
ented a very fine-grain implementation that placed one ant in
ach available processor of a Connection Machine (CM-2) super-
omputer to solve the Traveling Salesman Problem (TSP). Although
t was an innovative proposal, the fine grain parallel ACO did
ot scale due to the high communication overhead required

n the synchronization and the pheromone updating phases
42,75].

Bolondi and Bondaza achieved better results when solving the
SP using a hierarchical panmictic parallel ACO implemented in

 network of transputers. Several groups of ants executed a stan-
ard AS algorithm – each one in an available processor –, and a
ynchronous update of the pheromone trails was performed after
ierarchically broadcasting all the information. The parallel ACO
howed good scalability: almost linear speedup was achieved when
ncreasing the number of processors, no matter the size of the prob-
em instances faced [42].

Bullnheimer et al. [16] studied the communications in syn-
hronous and partially asynchronous master-slave parallel ACOs. In
he synchronous version, each slave locally updated its pheromone

atrix independently and the pheromone trials were globally

ynchronized with a given frequency. No certain conclusions can
e drawn from the experimental analysis, since it did not solve
ny concrete problem: it only simulated the communications on
SP instances with up to 500 cities. The asynchronous version had
puting 11 (2011) 5181–5197

better speedup and efficiency values than the synchronous version,
but the improvements diminished for the largest instances.

5.2. Master-slave model

Master-slave parallel ACO implementations have been quite
popular in the research community, mainly due to the fact that
this model is conceptually simple and easy to implement.

5.2.1. Coarse-grain master-slave
The standard implementation of coarse-grain master-slave ACO

assigns one ant to a slave process that is executed on an available
processor. The master process globally manages the global infor-
mation (i.e. the pheromone matrix, the best-so-far solution, etc.),
and each slave builds, optionally applies the local search, and evalu-
ates a single solution. The communication between the master and
the slaves usually follows a synchronous model.

The first proposal of this implementation was  ANTabu, a method
combining ACO and Tabu Search (TS), applied to solve the Quadratic
Assignment Problem (QAP) by Talbi et al. [93]. The TS method was
used as a local search to improve the solutions in each slave. The
parallel version was compared against a sequential ACO, a paral-
lel TS, genetic algorithms (GA) and variable neighborhood search.
Regarding the solution quality, parallel ANTabu was one of the two
best methods studied when solving QAPLIB instances with up to
256 locations in a cluster of 10 SGI Indy workstations. The compu-
tational efficiency of the parallel methods was not reported.

Synchronous and asynchronous versions of a coarse-grain
master-slave AS-like method were studied by Catalano and Malu-
celli [20] to solve the Set Covering Problem (SCP). Both versions
had similar speedup behavior and efficiency values when solving
OR-Library instances with up to 400 elements and 650 subsets in a
Cray T3D with 64 processors, although the quality of solutions was
not studied in the scalability analysis.

Delisle et al. [35] solved an industrial scheduling problem in an
aluminum casting center, using a multithread coarse-grain master-
slave ACO implemented with OpenMP on a Silicon Graphics Origin
2000 computer. The master spawns several threads (one for each
ant), which generate and evaluate the solutions. Specific considera-
tions about load balancing and information update were presented.
The experimental analysis solved problem instances with 50 and 80
jobs using up to 16 processors. Significant speedups were obtained
(up to 5.45 when using 16 processors), but the computational effi-
ciency values degraded as the number of processors grew.

Two applications following the standard implementation were
presented by Peng et al. [79,80] to solve a packing problem and
the image registration problem, respectively. The analysis were
mainly focused on the solution quality: in both cases the paral-
lel ACO quickly converged to better solutions than evolutionary
algorithms, but the computational efficiency was not studied.

Li et al. [64] applied a standard coarse-grain master-slave ACS
to the vector quantization codebook design. The method obtained
high efficiency values (>0.8) when working on 2–16 processors of a
DeepSuper-21C cluster (P4 Xeon), and it computed better solutions
than both a sequential ACS and a parallel independent runs. Group-
ing four ants on each processor and using a modified pheromone
updating rule improved the efficiency of the parallel model.

Ibri et al. [55] proposed an hybrid ACS/TS to solve a dispatching
and covering problem for emergency vehicle fleets. The standard
coarse-grain master-slave parallelization was used for the ACS,
where the slaves (implemented by threads) constructs the solu-
tions. A second parallel stage is applied to perform the TS operator

and the neighborhood evaluation. Problem instances with up to 100
vehicles, 23 stations, 20 zones and 30 emergencies were solved on a
Intel Core2 Duo, comparing synchronization strategies between the
parallel processes and the impact of the information exchange on
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he computational efficiency. The parallel implementations com-
uted better solutions than the sequential one. Sublinear speedup
alues were found when using more than two  threads, and the
synchronous method significantly reduced the execution time
hen compared with the synchronous implementation.

Some researchers have proposed assigning several ants per pro-
essor in coarse-grain master-slave ACO implementations.

Doerner et al. [37] used this idea in a synchronous master-slave
mplementation of ASrank (a variant of AS where the pheromone
eposit is weighted according to a rank of the best solutions)
o solve the Vehicle Routing Problem (VRP). Several classic VRP
nstances with up to 199 clients were solved in a Beowulf clus-
er with up to 32 processors. A sub-linear speedup behavior
as detected. The best values of computational efficiency (0.7)
ere obtained when using 8 processors, and then the efficiency
ecreased when the number of used processors increased.

Lv et al. [70] proposed a parallel ACO using P groups of ants dis-
ributed in P processors, which shared one pheromone matrix in a
ymmetric multiprocessing computer. This approach corresponds
o the coarse-grain master-slave model, where the shared mem-
ry acts like an implicit master and each slave holds a group of
nts. Parallel versions of MMAS and ACS were studied to solve
SPLIB instances with up to 15,915 cities on an IBM p-server with
wo Power5 processors. The parallel algorithms achieved better
olutions than the sequential versions, but their computational effi-
iency was not studied. The same idea was applied by Guo et al. [51]
o the protein structure prediction problem, implementing each
roup of ants with a different thread and using an asynchronous
ccess to the shared pheromone matrix. Similar results than a
revious sequential ACO were obtained on a 8 CPU IBM pServer.
eductions between 10 and 50 times were reported in the execu-
ion time, but the comparison is unfair since the sequential ACO
as executed on a slower computer and both methods used a dif-

erent number of ants. The master-slave ACO was between 2 and
0 times faster when using more than one group of ants.

Chintalapati et al. [25] grouped several ants in a same processor
n their coarse-grain master-slave ACO applied to the discovery of
lassification rules. Each group discovers rules and send them to
he master, who manages the pheromone matrix. Standard cancer
atasets with up to 168 features were solved in the experimental
nalysis performed in an heterogeneous cluster. The speedup val-
es depended on the dataset features and the number of ants, and
he best efficiency values (0.95) were obtained when using 128 ants
xecuting on 8 CPUs to solve the largest problem instance studied.

Recently, multithreading programming have been applied to
oarse-grain master-slave ACO, by assigning one thread to each
nt, and executing several threads on the same processor. Tsutsui
nd Fujimoto [97] studied synchronous and asynchronous variants
f parallel cunning AS (cAS) to solve the TSP. The experimen-
al analysis performed on a i7 965 (4 cores, 3.2 GHz) showed
hat a rough asynchronous implementation obtained superlinear
peedup by introducing a different algorithmic behavior than the
ynchronous cAS. In the parallel ACO by Gao et al. [48] to solve the
arget Assignment Problem, the main task to execute in parallel is
he construction of solutions. The experimental analysis compared

ultithreading implementations using OpenMP and Threading
uilding Block (TBB) in a Pentium Dual Core (2.4 GHz). Almost lin-
ar speedup values were obtained for problem instances with 100
argets, and the OpenMP variant was more efficient than the TBB
mplementation. The same idea was applied in the coarse-grain TBB
mplementation by Li et al. [63] to solve the TSP. Speedup values up
o 1.72 were obtained when using 400 ants to solve a TSP instance

ith 500 cities on a Pentium Dual Core (3.0 GHz).

In other implementations the main tasks to perform in parallel
re only related to the evaluation of solutions or the application
f the local search, mainly due to the inherent complexity of the
puting 11 (2011) 5181–5197 5187

problem faced. These implementations are categorized within the
coarse-grain master-slave model, considering the granularity of the
work performed by each slave process.

Tsutsui [95] solved the QAP using a parallel cAS conceived to
speed up a local search method performed by the slaves on solu-
tions previously built by the master. A multithreading approach
was adopted, and the communication overhead was reduced by
using the shared memory paradigm. Several QAPLIB instances with
up to 150 locations were solved using two quadcore PCs, and
significant improvements in the execution time were obtained.
Later [96], the coarse-grain master-slave outperformed both a syn-
chronous multicolony and a parallel independent runs model in
experiments performed in two  dual-core Opteron machines. The
optimal pump scheduling in water distribution networks was  tack-
led with a coarse-grain master-slave ACO by López-Ibáñez et al.
[68]. Multithreading programming techniques were used to imple-
ment the parallel evaluation of solutions, and a dynamic load
balancing scheduling for assigning solutions to the threads was  also
included. The experimental analysis solved a well-known problem
instance -already tackled with a sequential ACO- in a computer
with 2 dual-core AMD64 Opteron processors. Accurate solutions
were computed by the parallel ACO, which also obtained increasing
speedup values when using a higher number of ants.

The parallel evaluation of solutions was  also used in the ACS
by Weis and Lewis [99], applied to the design of a radio fre-
quency antenna structure. An ad-hoc grid computing approach
was implemented in a cluster of 47 non-dedicated PCs, using an
instant messaging protocol for the communications. The experi-
mental results demonstrated that the parallel ACS obtained high
speedup values with reduced overhead when increasing the size of
the problem instances.

Working in a higher level of abstraction, Craus and Rudeanu
[29] implemented a reusable framework for executing master-
slave parallel applications. Checkpoints were used to optimize the
communication between the master and the slaves, which asyn-
chronously requested exchange information by turns. Then, the
master only sent the modified information for each slave since its
last checkpoint. A parallel ACO was  used to test the framework
by solving a TSPLIB instance with 229 cities on a Sun Fire 15K
with 48 processors, achieving almost linear speedup when using
up to 25 processors, but the efficiency decreased when using more
resources. Later [30], the authors implemented a pyramidal frame-
work following a master-slave model which includes submasters
that managed the slaves under their control. The hierarchical orga-
nization allowed to reduce the communications, so it was  able to
achieve almost linear speedup values when using more than 25
processors.

Recently, the novel GPU platforms have provide an efficient
hardware to implement coarse-grain variants of master-slave ACO.

Catalá et al. [19] solved the Orienteering Problem (OP) with a
coarse-grain master-slave in which the solutions were built on the
GPU and the master executed in the CPU. The experimental anal-
ysis solved OP instances with up to 3000 nodes, comparing the
GPU parallel ACO executed in a PC with a nVidia GeForce 6600
GT graphic card with 8 pixel shader processors against a domain
decomposition method. Accurate solutions were achieved by the
GPU implementation using few ants, but the quality of results did
not further improve when using additional ants. The execution time
for the GPU computing was linear with respect to the number of
ants.

Zhu and Curry [106] implemented a GPU coarse-grain master-
slave ACO with a local search to solve bound-constrained

continuous optimization problems. The solutions were built, evalu-
ated, and improved using a local search method on the GPU,  while
the remaining tasks were executed on the CPU. The experimen-
tal evaluation studied twelve benchmark functions on a PC with
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 nVidia GeForce GTX 280 with 240 streaming processors. Given
 fixed execution time, the GPU implementation obtained better
olutions than a full CPU implementation. The authors reported
peedup values ranging between 128 to 403 when using 15360
hreads.

.2.2. Medium-grain master-slave
The master-slave ACO proposed to solve the OP by Mocholí

t al. [76] was conceived to execute in a grid environment. The
aster splits the problem in clusters, and the slaves find partial

olutions for each cluster using independent groups of ants with
on-overlapping pheromone matrices. Then, the master builds

 complete solution for the problem by combining the partial
olutions. The communication was provided by high level grid ser-
ices implemented using web services. Several random generated
nstances with up to 10,000 nodes were solved in a cluster with 32
Cs, showing that when using up to 32 groups of ants (the number of
vailable processors) the execution times exponentially decreased,
nd the quality of solutions improved.

A similar decomposition strategy was applied in the D-ant algo-
ithm to solve the VRP by Doerner et al. [38]. D-ant splits the
roblem and uses several slaves to compute a partial solution
or each subproblem. Then, the partial solutions are merged by

 master process, which also performed the pheromone evapora-
ion and deposit on components of the best-so-far solution. Unlike
he previous work, D-ant globally manages the pheromone matrix
or the whole problem, and each slave uses its own submatrix.
-ant was able to compute accurate solutions for classical VRP

nstances with up to 199 clients on a cluster with 16 processors,
hile reducing the execution time. However, the efficiency values
eteriorated when using more than two processors, suggesting a
oor scalability behavior. Later [36], an improved implementation
f the medium-grain master-slave D-ant outperformed a coarse-
rain master-slave, a multicolony, and an hybrid combining these
wo methods. Classic VRP instances with up to 480 clients were
olved on a IBM 1350 cluster with 32 processors. D-ant obtained
uperior efficiency values (up to 0.75 with 8 processors) with a
ery small degradation in the quality of the obtained solutions.

.2.3. Fine-grain master-slave
Randall and Lewis [84] tackled the TSP with a fine-grain master-

lave ACS. The slave processes sent each new component included
n the solution to the master, which performed the local update of
heromone traces. When solving TSPLIB instances with up to 657
ities in a cluster with 8 processors, the speedup was far below lin-
ar, and the maximum efficiency (0.83) was obtained when using
nly two processors. These poor results suggested that the fine-
rain approach with local update of pheromone is not an efficient
dea for ACO parallelization, due to the high frequency of commu-
ications. The quality of the obtained solutions were not reported.

An improved fine-grain master-slave implementation in a
hared memory computer was proposed by Delisle et al. [33]. The
aster process was replaced by a global memory that stored the

lobal pheromone matrix and the best-so-far solution, and critical
egions were used to avoid the mutual update of global informa-
ion. Each slave updated the local information periodically, but not
n every iteration. TSPLIB instances with up to 657 cities were solved
n a IBM/P 1600 NH2 with 16 Power3 processors. By spacing out
he local information updates, the proposed method achieved bet-
er performance than the implementation by Randall and Lewis: it

aintained the quality of solutions while avoiding the scalability
egradation up to 8 processors. Increasing the number of ants per

rocessor and reducing the number of iterations raised the per-
ormance, but reduced the quality of solutions. The experimental
nalysis was later extended to include a SGI Origin 3800 computer
nd also to use a Regatta node with Power 4 processors [34]. Better
puting 11 (2011) 5181–5197

efficiency values were systematically obtained in the IBM Regatta
machine, suggesting that technological evolution can improve the
efficiency of parallel ACO.

A recent fine-grain implementation of MMAS on GPU  was pro-
posed by Fu et al. [47] to solve the TSP. Unlike other approaches, the
GPU holds the pheromone matrix, which is actualized after every
step. So, the information of the master process is partly stored in
CPU and partly in the global memory of the GPU. In each step, the
GPU is used to generate random numbers and to compute the next
city for each ant, and the CPU only manages small pieces of data (vis-
ited cities and routes). The experimental evaluation solved TSPLIB
instances with up to 1000 cities on a i7 (3.3 Ghz) with a Nvidia
Tesla C1060 (240 cores). The speedup values were up to 30 on the
largest instances, and a bottleneck in the communication between
CPU and GPU – which demanded more than 20% of the execution
time- was detected.

5.2.4. Summary: master-slave parallel ACO
Master-slave implementations have been extensively used to

design parallel ACOs (see Table 2 for a summary of the related
publications). The model provides an easy and effective way to
take benefit of the additional processing power of parallel com-
puters for solving complex problems. Many proposals have used
the coarse-grain submodel, since it supplies a conceptually sim-
ple schema that achieves good speedup and scalability behavior.
The medium-grain submodel was  incorporated in the taxonomy in
order to include those works that propose a divide-and-conquer-
like approach for master-slave parallelization. The first proposals of
fine-grain models showed poor efficiency due to the large amount
of communications required, so innovative implementations were
devised in order to overcome this problem by exploiting fast
communication paradigms such as shared memory parallel archi-
tectures.

5.3. Cellular model

The cellular model for parallel ACO is a generic proposal fol-
lowing the cellular model for parallel evolutionary algorithms. So,
it differs from previous proposals of cellular-like models such as
the hardware-parallel ACOs by Middendorf et al. (using processor
arrays [72] and FPGA [89]) and other so-called cellular implemen-
tations, mainly because they use a cellular automata model [8,103],
but without proposing a parallel implementation.

The single one implementation of a parallel cellular ACO
was presented by Pedemonte and Cancela [78], who proposed
a distributed-memory implementation of the cellular model for
solving a reliable network design problem. The cellular model
was the best parallel method among the studied ones, improv-
ing over the results obtained using previous parallel evolutionary
algorithms (up to 31% for a specific problem instance), and also
showing high values of computational efficiency (over 0.9 using a
cluster with four processors). However, the results slightly deteri-
orated with respect to those achieved by a sequential ACO. Several
improvements are reported to be currently investigated in order to
overcome the lose of quality when using the cellular model. Imple-
mentations using both multicore and GPU parallel architectures
could further improve the computational efficiency of this model.

5.4. Parallel independent runs model

The parallel independent runs is a straightforward approach
that applies a multi-start search using several processes that

executes the same ACO algorithm. The model does not involve
communications between processes, so its search mechanism is
identical to the one resulting from applying several sequential
ACOs.
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Table  2
Summary of master-slave parallel ACO proposals.

Author Year Algorithm Problem Computational platform

Coarse-grain
Talbi et al. [93] 2001 ANTabu QAP SGI Indy cluster
Catalano and Malucelli [20] 2001 AS SCP Cray T3D
Delisle et al. [35] 2001 ACO Industrial scheduling SGI Origin 1000
Craus  and Rudeanu [29] 2004 ACO TSP Sun Fire 15K
Craus  and Rudeanu [30] 2004 ACO TSP Sun Fire 15K
Doerner  et al. [37] 2004 ASrank VRP Cluster
Peng  et al. [80] 2005 ACO Packing problem PC
Peng  et al. [79] 2006 ACO Image restoration PC
Lv  et al. [70] 2006 MMAS,ACS TSP IBM p-server multiprocessor
Li  et al. [64] 2007 ACS Codebook design DeepSuper-21C
Catalá  et al. [19] 2007 ACO OP GeForce 6600GT GPU
Tsutsui [95] 2007 cAS QAP PCs (dualcore, quadcore)
Tsutsui [96] 2008 cAS QAP PCs (dualcore, quadcore)
López-Ibáñez  et al. [68] 2009 ACO Pump scheduling Dualcore PC
Guo  et al. [51] 2009 ACO Protein structure prediction IBM p-server multiprocessor
Zhu  and Curry [106] 2009 ACO Bound constrained optimization GeForce GTX 280 GPU
Weis  and Lewis [99] 2009 ACS Antenna design Non-dedicated cluster
Ibri  et al. [55] 2010 ACS Emergency fleet dispatching Intel Core2 Duo
Chintalapati et al. [25] 2010 ACO Classification rules discovery Cluster
Tsutsui  and Fujimoto [97] 2010 cAS TSP i7 965
Gao  et al. [48] 2010 ACO Target assignment Pentium Dual Core
Li  et al. [63] 2010 ACO TSP Pentium Dual Core
Medium-grain
Mocholí et al. [76] 2005 ACO OP Cluster, grid
Doerner et al. [38] 2005 D-ant VRP Cluster
Doerner et al. [36] 2006 D-ant VRP IBM 1350 cluster
Fine-grain
Randall and Lewis [84] 2002 ACS TSP IBM SP-2 cluster
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Delisle et al. [33] 2005 ACS
Delisle et al. [34] 2005 ACS 

Fu  et al. [47] 2010 MMAS 

Stützle [90] studied the parallel independent execution of
MAS with a local search for the TSP. The evaluation analyzed

he benefits of using a parallel model with respect to a sequential
CO, comparing the quality of the solutions for TSPLIB instances
ith up to 1173 cities in a UltraSparc II workstation. The results

howed that the parallel executions obtained better solutions than
he sequential algorithm in all the studied instances.

Later, a parallel independent runs implementation of AS with
 local search demanding high execution times was presented by
ahoual et al. [83] to tackle the SCP. The AS was compared against

 coarse-grain master-slave parallel ACO for solving SCP instances
ith up to 500 elements and 5000 subsets in a cluster of 40 PCs.

he parallel independent runs AS obtained near ideal efficiency
alues due to the negligible processes communication, and it also
mproved the solutions quality with respect to the sequential algo-
ithm. On the other hand, the coarse-grain master-slave efficiency
alues strongly depended on the size of the problem instances,
anging from 0.21 for the smaller instances to 0.83 for the larger
nes.

Alba et al. [4] compared three parallel ACS (parallel indepen-
ent runs, multicolony, and coarse-grain master-slave) to solve
he Minimum Tardy Task Problem (MTTP) instances in a cluster

ith only 3 PCs. The three methods achieved similar quality

f solutions. Mixed results were reported when increasing the
roblem size using a fixed number of processors, but the parallel

able 3
ummary of parallel independent runs ACO proposals.

Author Year Algorithm 

Stützle [90] 1998 MMAS 

Rahoual et al. [83] 2002 AS 

Alba  et al. [4] 2005 ACS 

Alba  et al. [5] 2007 ACS 

Bai  et al. [11] 2009 MMAS 
TSP IBM/P1600
TSP SGI Origin 3800, IBM Regatta
TSP i7, Nvidia Tesla C1060

independent runs model generally obtained the highest efficiency
values. Later [5],  the parallel independent runs was  compared
against asynchronous multicolony models using star and unidi-
rectional ring topologies in a cluster of 8 PCs. The models that
involve communication found better solutions, but the parallel
independent runs model had better efficiency values.

Bai et al. [11] implemented a parallel independent runs of
MMAS on GPU. Each thread executed one ant and each thread
block was used for an independent execution. The main algorithm
runs on GPU, while the CPU is only used to initialize the solu-
tions and to control the iteration process. Six TSPLIB instances with
up to 400 cities were solved in a PC with a nVidia GeForce 8800
GTX with 128 stream processors. Regarding the solutions quality,
the GPU-parallel implementation outperformed three sequential
MMAS versions, while acceleration values between 2 and 32 were
obtained.

Table 3 summarizes the proposals of parallel independent runs
ACO implementations. The model has been seldom used. It has
been employed in works mainly focused on achieving speedup and
scalability improvements. The search mechanism is similar to the
one employed by sequential ACOs, even though the multistarting
approach is sometimes useful to avoid stagnation. Parallel indepen-

dent runs ACO implementations frequently obtain similar results
quality than sequential ACOs, and they are often outperformed by
parallel models that use communication.

Problem Computational platform

TSP UltraSparc II workstation
SCP Cluster
MTTP Cluster
MTTP Cluster
TSP GeForce 8800GTX GPU
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.5. Multicolony model

Parallel ACO implementations following the multicolony model
ave been extensively used. This approach provides a cooperative
earch mechanism that often allows obtaining superior results than
he sequential model as well as outperforming other parallel ACOs.

ulticolony also admits a simple implementation in distributed
emory platforms such as clusters of computers.
The main features to be considered when designing a mul-

icolony ACO were summarized by Janson et al. [57]: the
ommunication frequency and the neighborhood topology; the
ype of information that is exchanged between the colonies; how
he information received from other colonies is used; and homo-
eneous versus heterogeneous approaches.

Michel and Middendorf [73,74] introduced a configuration that
ecame the standard for multicolony ACO, since it was  later used
y many other authors: a synchronous algorithm with a structured
eighborhood and a fixed communication frequency for sharing the
est solutions, each one of whom, if better, substitutes the best-so-
ar solution in the destination colony.

Michel and Middendorf solved the Shortest Common Superse-
uence Problem (SCSP), a problem with application in bioinformat-

cs (DNA sequencing). Their multicolony model obtained slightly
etter solutions than a single colony ACO for strings with length up
o 160, but no efficiency analysis were performed. Later, four differ-
nt exchange strategies were studied by Middendorf et al. [75] to
olve the TSP and the QAP. The multicolony model outperformed

 sequential ACO in a TSPLIB instance with 101 cities, while no
efinitive conclusions were drawn for a QAPLIB instance with 60

ocations. The best results were obtained when sending the best
ocal solution using an unidirectional ring connection topology and
ubstituting the best-so-far solution accordingly. The authors also
oncluded that the exchange frequency should be set to avoid the
egradation of either the solution quality or the ACO computational
fficiency.

Piriyakumar and Levi [82] solved the TSP with a standard multi-
olony ACO. The experimental evaluation solved a TSPLIB instance
ith 52 cities on a Cray T3E multiprocessor, studying several

uality and efficiency metrics: the cost of the best solution, the
otal computing time and the single processor time, and the rates
etween communication/idle times and total computation time.
he analysis showed that good quality results can be obtained while
aintaining bounded values for idle and communication times. A

peedup study was not included.
A weapon-target assignment problem was faced by Lee et al.

62] using a multicolony ACO that applied a local search method
o the best solution from all colonies, and the improved solution
as considered for an additional pheromone update process. The
roposal outperformed a GA and other sequential and parallel ACOs
egarding both the solution quality and the execution time when
olving problem instances with 120 weapons and 100 targets.

PACS, the multicolony ACS to solve the TSP by Chu et al. [27], fol-
owed the standard approach but it included an additional update
very time that a colony receives a solution. The experimental eval-
ation only studied the solution quality for three TSPLIB instances
ith up to 225 cities, omitting an efficiency analysis. Several con-
ection topologies were evaluated, and all the proposed PACS
ariants obtained better solutions than sequential AS and ACS algo-
ithms.

Chu and Zomaya [26] evaluated two multicolony models – using
 circular exchange of solutions and a shared pheromone matrix,
espectively – for solving a prediction of protein structure problem.

he experimental evaluation was unconventional, since it used as
he performance metric the number of CPU ticks needed to find
he best solution in a cluster with 5 processors. Both multicolony

ethods outperformed a coarse-grain master-slave approach, and
puting 11 (2011) 5181–5197

the multicolony with circular exchange of solutions achieved the
best performance values.

Yang et al. [104] applied a traditional multicolony ACO using an
unidirectional ring topology to maximize the density of the demand
covered by direct travels on a bus network. The experimental evalu-
ation studied the solution quality and the execution time in a cluster
of 8 PCs. Both metrics improved in the parallel ACO when compared
with a single colony model.

The standard approach was also applied in the multicolony
MMAS by Xiong et al. [100] to solve the TSP. The experimental
analysis solved classical TSPLIB instances with up to 15915 cities
in a Dawn 4000L massively parallel processing (MPP) computer
with 64 nodes. The parallel MMAS got better solutions than the
sequential one as the problem size increased, but the efficiency
significantly decreased when using more than 8 nodes.

Hongwei and Yanhua [54] solved the DNA sequence determina-
tion problem applying a multicolony MMAS that used the strategy
of sorting and exchanging information for pheromone updating.
When executed in a Dawn TC4000 MPP  supercomputer, the par-
allel MMAS achieved better solutions than a sequential ACO, a TS
method, and a GA. The authors claimed to have a sublinear scalabil-
ity behavior due to the communications, but no speedup analysis
was presented.

Jovanovic et al. [58,59] solved the Minimum Weight Vertex
Cover Problem (MWVCP) with a standard multicolony ACO imple-
mented with threads in a Intel Core2 PC. Several interconnection
topologies and policies on how to use the exchanged information
were studied for instances with up to 150 nodes. The multicolony
model computed better solutions than both a parallel independent
runs and a sequential ACO. The authors found out that increasing
the number of colonies is not always a good strategy in order to
improve the results. No efficiency analysis was  carried out.

Tas̆kova et al. [94] solved a finite element mesh decomposition
problem using a method that combines a parallel multicolony ACO
with a refinement algorithm. A standard multicolony approach is
used, which exchanges the best solutions found on each refinement
level. The experimental analysis was performed in a cluster with 8
nodes, each one with two  AMD  Opteron 1.6 GHz processors. The
distributed implementation obtained the same quality of solutions
than the sequential one, but low speedup values were achieved
(up to 2.98 when using 8 processes), mainly due to the inherent
sequential features of the method.

Recently, the multi-depot VRP was  solved by Yu et al. [105]
applying a multicolony ACO where outstanding ants are exchanged
at certain intervals using a ring interconnection topology. Instances
with up to 360 customers were solved in a cluster with 8 PCs. The
multicolony ACO achieved competitive solutions when compared
with other methods (less than 3% far of the best known solutions),
but no efficiency analysis was  performed.

Researchers have also introduced other variants of multicolony
that differ from the standard implementation. Among several
different approaches, asynchronous multicolony algorithms have
often been proposed, and another frequent idea is to include
dynamic or adaptive methods for the communication frequency
and/or topology.

The multicolony ACO by Chen and Zhang [23] used adaptive
methods for exchanging the best solutions and adjusting the fre-
quency of information exchanges. TSPLIB instances with up to
318 cities were solved in a Dawn 2000 MPP  computer, comparing
the solutions quality and the execution time against a sequential
ACO and a multicolony with circular exchange of the best local
solution. The adaptive multicolony performed the best, and the

adaptive frequency allowed reaching better results than using fixed
intervals, though it required larger execution times. A sub-linear
speedup behavior was detected up to 35 processors, and the values
improved when facing TSP instances of increasing size. Efficiency
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alues up to 0.8 were obtained when using 25 processors to solve
he largest instance.

Chen et al. [22] also proposed a novel strategy for information
xchange, where each colony dynamically determines a destina-
ion colony to send its best solution using an adaptive method. The
requency of information exchange depended on the diversity of
olutions, and the pheromone matrix was updated considering the
est solution of the colony and the received solution. A Shenteng
800 MPP  supercomputer was used to solve TSPLIB instances with
p to 318 cities. The results improved over a sequential ACO, and
he adaptive information exchange strategy allowed keeping a bal-
nce between the convergence and the diversity of the solutions.
he speedup did not linearly increase when adding processors, but
ood efficiency values were obtained for large sized problems when
sing up to 25 processors.

In the same line of work, Ellabib et al. [46] proposed MACS,
 synchronous multicolony ACS with an adaptive mechanism for
he global pheromone update. In MACS, each colony worked inde-
endently, sharing the best solutions through an exchange module
hat encapsulated all the communication issues. Star, hypercube,
nd unidirectional ring interconnection topologies were compared
n the experimental evaluation on a cluster of 8 PCs for solving
tandard medium-sized instances of the VRP with time windows
VRPTW) and the TSP. The analysis studied the effect of the different
opologies on the solutions quality, showing that the best results
ere obtained with the star topology. In addition, star-MACS also

utperformed a previous ACS for the VRPTW, and a PACS for the
SP. No efficiency analysis was reported.

Manfrin et al. [71] made an in-depth analysis of parallel ACOs
o solve the TSP. Multicolony was identified as a promising paral-
el model applied to MMAS to solve TSPLIB instances with up to
392 cities in a cluster of 8 PCs. Better results were achieved when
educing the frequency of the communication between colonies.
o, the authors suggested using sophisticated communication pat-
erns, dependant on the size of the instances and the execution
ime, and other complex mechanisms such as reinitializing the
heromone trails and dividing the search space to avoid premature
onvergence. Recent experiments on multicolony configuration by
womey et al. [98] showed that the best communication strate-
ies depend on whether a local search method is used or not, thus

 specific analysis should be performed to avoid a subpar search
ehavior. The analysis concluded that preventing high commu-
ication rates makes more likely that colonies focus on different
egions of the search space, emphasizing the exploration and pos-
ibly improving the results. The two previous works focused on the
olution quality, and they did not present efficiency analysis.

Lucka and Piecka [69] solved the VRP with a multicolony
avings-based ACO in a multicore architecture, using a different
hread for each colony. The colonies asynchronously exchange the
est solutions using the shared memory within the same node and
sing shared files across different nodes. The experimental anal-
sis solved VRP instances with up to 420 customers in a cluster
ith 72 Sun X4100, each one with two dual core processors. When

ncreasing the number of colonies up to 32, the quality of the solu-
ions improved and the execution times reduced. Moreover, the
ommunication time remained bounded even for the largest VRP
nstances solved.

The works by Xu et al. [102] and Xiong et al. [101] introduced a
ulticolony ACS with dynamic transition probability. The infor-
ation exchange occurs with a fixed frequency, but the global

est solution and the full pheromone matrix are communicated
n different iterations. A partially asynchronous implementation
as studied to solve the TSP in a Dawn 4000L, achieving similar
esult quality than a sequential ACS. The parallel ACS scaled poorly,
ince the best efficiency values were obtained when using only two
odes, and it quickly drops when increasing the number of nodes
puting 11 (2011) 5181–5197 5191

up to 16. Later, Xiong et al. studied a polymorphic version of the
previous method (i.e. using different kind of ants and pheromone),
and similar results were obtained.

Sameh et al. [87] also studied a multicolony ACS that exchanges
the full pheromone matrix, placing each colony in a different pro-
cessor. Unlike the previous approach, the best-so-far solution and
the full pheromone matrix were exchanged between the same
pairs of colonies, and the received information was used in the
pheromone update process. The experimental results for a TSP
instance with 318 cities demonstrated that the time required to
find an optimal solution decreases when using more colonies, and
that the information exchange frequency affects the time required
to find an optimal solution. No efficiency analysis was carried out.

A different approach has been applied to solve optimization
problems with multicolony ACOs using a problem-decomposition
strategy. The multicolony ACO by Chen et al. [24] solved the
classification rule discovery problem using several colonies to inde-
pendently search for the antecedent part of an input set of rules
and broadcasting the training set each time that a colony updated
it. Four different data sets were solved in a Dawn 2000 MPP  com-
puter. The multicolony found simpler and more accurate rules than
both a sequential ACO and a decision-tree-based algorithm, but no
efficiency study was  reported.

An original multicolony ACO to solve large-dimension decom-
posable problems was  presented by Lin et al. [65]. The model used
two coupled colonies to optimize different parts of the objective
function applying local procedures for the construction phase and
the pheromone update process. A stagnation-based asynchronous
migration exchanged information between colonies. The proposed
method got better solutions and convergence speed than a sequen-
tial ACO when solving eight continuous problems. Lin et al. claimed
that this parallel model should be useful for optimization in high
dimensional spaces, but no efficiency analysis was performed.

5.5.1. Summary: multicolony parallel ACO
Multicolony models have been widely used in parallel ACOs

as they provide an accurate search exploration pattern based
on the cooperative behavior of many ant colonies. Indeed,
Table 4 summarizes the proposals of multicolony parallel ACO
algorithms. Many authors have followed the traditional configu-
ration by Michel and Middendorf [73,74],  but some other valuable
variants have been proposed, including asynchronous implemen-
tations, dynamic and adaptive models for the communication
frequency and/or the neighborhood topology, and multicolonies
following a problem-decomposition approach. Most of the mul-
ticolony implementations were developed using the distributed
memory paradigm in cluster platforms.

Multicolony ACOs showed promising results since the first
implementation in the last years of the 1990’s, but the model
has been continuously improved, paying special attention to the
mechanisms used for exchanging information among colonies.
Recent studies confirmed that a trade-off between the isolated
exploration within each colony and the cooperation using infor-
mation exchange is desirable in order to achieve accurate results
and performance. Increasing the frequency of communication puts
emphasis in exploiting good solutions, so this strategy is useful
when solving instances of increasing size. However, it also could
have a negative impact in the parallel ACO efficiency due to the
cost of the communications.

5.6. Hybrid models
There have been many proposals for designing hybrid parallel
ACOs that combine the characteristics of more than one parallel
model. However, in practice, only a few hybrid parallel ACO meth-
ods have been implemented.
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Table  4
Summary of multicolony parallel ACO proposals.

Author Year Algorithm Problem Computational platform

Michel and Middendorf [73] 1998 EAS SCSP Multiprocessor
Michel  and Middendorf [74] 1999 EAS SCSP Multiprocessor
Middendorf et al. [75] 2002 EAS QAP PC
Piriyakumar and Levi [82] 2002 ACO TSP Cray T3E
Lee  et al. [62] 2002 ACO Weapon-target assignment PCs
Chu  et al. [27] 2004 ACS TSP N/D
Chen  and Zhang [23] 2005 ACO TSP Dawn 2000
Chu  and Zomaya [26] 2006 ACO Protein structure prediction Cluster
Chen  et al. [24] 2006 ACO Classification rule discovery Dawn 2000
Manfrin et al. [71] 2006 MMAS TSP Cluster
Yang  et al. [104] 2007 ACO bus network design Cluster
Ellabib  et al. [46] 2007 ACS VRPTW,TSP Cluster
Chen  et al. [22] 2008 ACO TSP Shenteng 1800
Xiong  et al. [100] 2008 MMAS TSP Dawn 4000L
Lin  et al. [65] 2008 ACO Decomposable problems PC
Hongwei and Yanhua [54] 2009 MMAS DNA sequence determination Dawn TC4000
Lucka  and Piecka [69] 2009 ACO VRP Cluster
Xu  et al. [102] 2009 ACS TSP Dawn 4000L
Jovanovic et al. [58] 2009 ACO MWVCP Intel Core2
Jovanovic et al. [59] 2010 ACO MWVCP Intel Core2
Tas̆kova  et al. [94] 2010 ACO Finite element mesh decomposition Cluster
Twomey et al. [98] 2010 MMAS TSP Cluster
Xiong  et al. [101] 2010 ACS TSP Dawn 4000L
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an insight on the main results from the related works, provid-
Yu  et al. [105] 2010 ACO 

Sameh  et al. [87] 2010 ACS

The parallel combination of ants and evaluation of solution ele-
ents was included as one of the categories of the taxonomy by
andall and Lewis [84]. This model used two levels of master-slave
arallelism; one between the colony and the ants, and another one
etween each ant and the evaluation of the solution components.
ater, Delisle et al. [33] suggested an hierarchical hybrid in two
evels. The upper level was a multicolony model that employed

essage passing for the intercolony communications, and the
ower level was a fine-grain master-slave in which the master
rocess was replaced by a global shared memory. No specific imple-
entations have been presented for the first theoretical proposal,
hile the second one has been recently adopted in the work by Liu

t al. [66], where it was used to solve a routing problem in mobile
etworks.

Iimura et al. [56] studied a parallel Queen Ant Strategy (ASqueen),
 method using a group of agents to build solutions and a queen ant
iving directives to the agents about when to diversify the search
r to exploit good solutions. This parallel ACO followed an hybrid
pproach that combined a master-slave model with a multicolony:
he queen ant was  the master, which controlled the search, and each
lave held a colony that worked independently on the same prob-
em, periodically sending its best solution to the master. A TSPLIB
nstance with 76 cities was  solved in the experimental evaluation
n an heterogeneous cluster with 9 PCs. The parallel model slightly
mproved the solutions quality when considering an increasing
umber of agents, while also reducing the execution time.

An original parallel ACO implementation was proposed by Liu
t al. [67] for solving multi-stage decision problems following a
ecomposition strategy using a construction graph. Each process
erformed the ACO search in a subproblem and the whole solu-
ion search was accomplished cooperatively by the set of processes.
everal processors were arranged in a pipeline-like structure that
llowed having many ants concurrently solving subproblems at the
ame time, and the pheromone update was performed after each
nt built a whole solution. The experimental evaluation solved an
d-hoc example problem using a cluster of PCs, and the efficiency

nalysis showed that the speedup values increased when solving
arge problems or when using many ants.

Roozmand and Zamanifar [86] improved the previous proposal
rom Chen et al. [24] to solve the classification rule discovery
Multi-depot VRP Cluster
TSP Cluster

problem with an hybrid parallel ACS. In the new method several
colonies worked independently on different categories with all the
input set, and a coarse-grain master slave model – implemented
with multithreading – was used for constructing and evaluating
the solutions. An additional pheromone update is applied using
the values of the best colony each time that a rule is found. Five
public-domain desease data sets were used in the experimental
evaluation. The method was  able to discover simple rules than the
parallel ACO by Chen et al. [24], with higher predictive accuracy
than those obtained by other previous ACO-based methods. The
authors claimed that “by using efficient communication methods”
the multicolony model was able to reduce the speed of convergence
to a local optimum (thus achieving more accurate results), but no
further details were provided about the computational efficiency.

Following a different line of work, the parallel ACO by Liu
et al. [66] implemented a model similar to the two-level hierar-
chical hybrid proposal by Delisle et al. [33]. The upper level used
a standard multicolony approach employing the Message Passing
Interface for communication; and the lower level used a fine-grain
master-slave model to manage the shared pheromone matrix using
multithreading (the master process is replaced by a global shared
memory). This hybrid model was applied to solve a multi-path rout-
ing problem in Mobile Ad-hoc Networks (MANETs), and the parallel
ACO achieved better solutions than both the AODV and DSR pro-
tocols regarding the packet delivery ratio and average end-to-end
packet delay. No efficiency analysis was reported.

A summary of the hybrid proposals for parallel ACO is presented
in Table 5.

6. Comparative analysis

This section presents a comparative analysis of the paral-
lel ACO models in the new taxonomy, regarding the two main
goals when using a parallel implementation: the computational
efficiency and the quality of results. The study is aimed at offering
ing specific contributions to the research community in order to
evaluate the benefits of each parallel model, and possibly help-
ing them to select one of them for solving a given optimization
problem.
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Table  5
Summary of hybrid parallel ACO proposals.

Author Year Algorithm Problem Computational platform

Randall and Lewis [84] 2002 ACO N/D N/D (theoretical)
Delisle  et al. [33] 2005 ACO N/D N/D (theoretical)
Iimura  et al. [56] 2005 ASqueen TSP Cluster
Liu  et al. [67] 2006 ACO Multi-stage problems Cluster
Roozmand and Zamanifar [86] 2008 ACS Classification rule discovery Cluster
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.1. Computational efficiency

The overview of the related works allows to conclude that
oarse-grain master-slave and multicolony are the most promising
odels for achieving high computational efficiency when imple-
enting parallel ACOs.
The multicolony model has a certain degree of flexibility that

llows developing implementations in several parallel computing
latforms without downgrading the efficiency values it usually
btains in distributed memory computers. Multicolony provides
he best scalability behavior, and it is the most suited model to be
xecuted in large clusters, allowing to tackle hard-to-solve opti-
ization problems that involves complex computations and/or
anages large volumes of data [26,54,104]. However, a compre-

ensive experimental study on the capabilities of the multicolony
odel implemented in other hardware platforms, regarding the

omputational efficiency and scalability metrics, remains to be
one.

The performance of the coarse-grain and the fine-grain
aster-slave models is strongly related to the frequency of com-
unications and the workload of each slave. For this reason, usually

oarse-grain implementations are able to achieve better speedup
alues than fine-grain ACOs. However, when the number of slaves
ighly increases, the speedup of the coarse-grain master-slave
odel may  deteriorate due to bottleneck in the communications to

he master. To tackle this problem, some researchers have grouped
everal ants in a single slave [25,37,51,70],  while other propos-
ls have incorporated submasters that control several slaves in
rder to minimize the communications to the master [29,30]. A
hird alternative is to use an asynchronous model of communi-
ations, which modifies the behavior of the sequential ACO since
he slaves work with the information sent by the master in a
revious communication [16,20,29,51].  Regarding the fine-grain
aster-slave model, the empirical analysis indicate that the large

olume of required communications conspires against achieving
arge speedup values. To deal with this issue, some authors have
roposed to space the communications and/or synchronizations
o improve the speedup values [33,84], modifying the algorithmic
ehavior of the sequential ACO. A recently proposed new alterna-
ive consists of implementing the fine-grain master-slave model on
PU [47], using the shared memory to store the pheromone matrix
nd to perform the communications. In this new proposal, a key
ssue is to reduce the bottleneck in the communication between
PU and GPU.

The medium-grain master-slave model is a novel approach not
resent in other metaheuristics that do not involve a construction
rocess (e.g., EAs). As this process consists in sequentially incor-
orating components to a empty solution, it can be split between
ultiple slave process that compute solutions to subproblems.

his approach is helpful to cope with very large instances that
therwise would be computationally very expensive or even

mpossible to tackle due to memory limitations. The medium-
rain master-slave model has obtained large speedup values when
mplemented in grid environments [76] and acceptable speedup
alues in clusters [36].
Multi-path routing in MANETs Cluster

The parallel independent runs is conceptually the simplest one
among the models in the new taxonomy. It trivially achieves almost
linear speedup values, since it does not involve communications.
In general, this is the only parallel model able to outperform the
efficiency of the multicolony ACO [4,5].

The cellular model has the capability of achieving high speedup
values, specially when implemented in modern parallel com-
puting platforms. In this model of parallelization there is a
trade-off between the size of the neighborhood and the compu-
tational efficiency, so an asynchronous model of communication
is suggested as the best strategy for not downgrading the
performance [3].

The hybrid models have generally been implemented using
a multicolony in which each colony works following a master-
slave model. The computational efficiency of these models is quite
complex to analyze, because it involves two different levels of
communication. When an accurate tunning is performed, hybrids
models are able to inherit the good levels of efficiency of the mul-
ticolony ACO [56,67].

6.2. Quality of results

The algorithmic behavior of the coarse-grain and the fine-grain
master-slave models is similar to a sequential implementation,
except for minor effects produced by concurrence (for example,
when a master-slave implementation uses a local pheromone
deposit or an asynchronous model of communication). As a con-
sequence, no major differences in the quality of the solutions are
observed when comparing with a sequential ACO for most opti-
mization problems.

The parallel independent runs model executes identical copies
of a sequential ACO, thus it also obtains similar quality of results.
However, by using several independent colonies the model is some-
times able to achieve slightly better results than a sequential ACO,
specially when the traditional method suffers a stagnation situa-
tion.

The quality of the solutions computed by the multicolony model
is clearly superior than the sequential one for most optimiza-
tion problems, mainly due to the multiple search mechanism,
the improved diversity, and the ability of handling large prob-
lem instances. The impact of the frequency of the communications
in the solution quality was extensively studied by Twomey et al.
[98], showing that preventing high communication rates between
colonies makes more likely that the parallel ACO focus on differ-
ent regions of the search space, emphasizing the exploration and
improving the results. When implemented as a multicolony com-
bined with another parallel ACO model, hybrids models shares this
capability, and they usually obtain more accurate results than both
sequential and non-hybrids parallel models.

Up to now, the only one implementation of the cellular model
for parallel ACO showed a slight deterioration in the quality of the

solutions when solving a network design problem. Several issues
about this method need to be further studied, specially the balance
between the neighborhood size (and the communications) and the
quality of solutions.
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Fig. 4. Number of parallel A

. Trends and perspectives

As it has been made clear along the previous sections,
he reviewed literature includes many articles introducing vari-
us alternatives for parallel ACO algorithms, following different
pproaches. Some general perspectives can be extracted from the
tudy of the existing proposals.

.1. Overview

The parallel independent runs model usually obtains results of
imilar quality as the single colony implementations, but the mul-
istart approach is sometimes useful to avoid stagnation and the

odel can trivially achieve linear efficiency gains. Concerning the
earch pattern, most master-slave models essentially work as a
ingle-colony algorithm, thus achieving the same quality of results.
he medium grain master-slave model, which applies a decompo-
ition approach, performs a different search, specially adapted to
arge dimension problem instances. All master-slave parallel ACOs
re able to obtain efficiency gains which depend on the load balanc-
ng; usually the coarse grain master-slave model fare much better
han the fine-grain model, due to their reduced communication
oads. Multicolony models usually are able to get better quality
f solutions than other parallel models, and they provide accept-
ble efficiency values in most platforms. Tuning the frequency of
ommunication is the key element for reaching a good trade-off
etween efficiency and quality of solutions in a multicolony ACO;
his is not always easy to achieve, and is typically done empirically.

The main trend in the field is to choose multicolony models and
o tune the communication frequency, as the best alternative for
CO parallelization. Coarse-grain master-slave models are a robust
econd choice, which has also been employed in many articles. The
ewly proposed cellular ACO is not consolidated yet, and further
ork is needed in order to determine its usefulness. Fig. 4 presents

he number of publications grouped by parallel ACO model (as pre-
iously mentioned, the pioneering works are not classified).

.2. Software issues and tools

In a general view, the metaheuristics research community has
roposed and implemented frameworks including parallel versions
f many well-known techniques. Generic frameworks help devel-
ping new parallel metaheuristics variants, experimenting with
xisting ones, tackling new applications, and quickly performing
air comparisons in a well-known and stable environment. Such a

ramework for parallel ACO algorithms has not been found out in
he exhaustive review of the literature performed to prepare this
ork. Most research works have developed ad-hoc implementa-

ions, without taking into account the design of general software
oposals grouped by model.

libraries for parallel ACO models. The solely exception is the par-
allel skeleton for ACO included in the MALLBA library [6],  but it
has only been used by its creators [4,5]. One of the reasons which
may explain the absence of a generic parallel ACO framework is
that the implementations seem to be more closely tied to the par-
ticular problems solved than in other metaheuristic techniques. As
a consequence, each work essentially starts the implementation
from scratch, making it difficult to reuse the existing work, and to
compare alternative methods. There is, then, an open challenge to
develop such a framework for parallel ACO.

C and C++ have been the most used languages to develop par-
allel ACO implementations. Some other languages and tools have
been sporadically used, such as Java and Matlab. Ad-hoc imple-
mentations of parallel ACO algorithms have been developed using
libraries for parallel computing, such as implementations of the MPI
standard [50] for distributed memory platforms, OpenMP [21] and
Intel Threading Building Block [85] for shared memory computers.

7.3. Parallel computing platforms

When studying any class of parallel algorithms, it is impor-
tant to take into account which computing platforms are used, as
their architecture notably impacts in the time required to perform
the communications, the synchronization, and the data sharing.
Fig. 5 shows the number of publications grouped by the type of
parallel architecture employed. Cluster platforms have been the
most popular choice for implementing parallel ACO algorithms, fol-
lowed by parallel ACO proposals implemented on multiprocessors
and massively parallel computers. In the last years, an impor-
tant trend in the field of parallel computing has focused on new
platforms, in particular grid computing, multi-core servers and
GPU-based computing. Nevertheless, in the parallel ACO commu-
nity, the experimentation with these new architectures has just
started. Some examples include: two  implementation conceived
to execute on a grid environment [76,99], four based on GPU
cards [11,19,47,106],  and nine works which employed multi-core
architectures [48,55,58,59,63,68,95–97].  The near future will cer-
tainly witness a growing number of implementations on these new
platforms, leading to novel proposals specifically adapted to take
advantage of the infrastructure characteristics.

7.4. Application domains

Table 6 summarizes the number of parallel ACO proposals
regarding the application domains. Many of the published works

have focused on providing experimental results based on solving
well-known combinatorial optimization problems, like TSP, QAP,
MAXSAT, and other classical problems. These works have been
mainly devoted to demonstrate the effectiveness of the parallel
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odels of ACO to outperform the traditional sequential implemen-
ations, regarding both the computational efficiency metrics and/or
he quality of results. There have been a predilection for working
ith TSP, which was the problem solved by the first papers on ACO

lgorithms, and since then, it has been the benchmark of preference.
Nevertheless, in recent years there has been a growing num-

er of papers applying parallel ACOs to solve a larger variety of
roblems, including some real-life based ones, instead of idealized
enchmark situations.

Concerning those real-world problems, parallel models of ACO
ave been used in practice in many scientific application domains.
mong the most important ones solved in the last years, we can
ention:

Real-world routing and planning, where optimization problems
are used to model complex real-life situations such as vehicle
routing, military planning, etc. The master-slave model have been
used to solve the Orienteering Problem in its coarse-grain [19]
and medium-grain [76] flavors, and the coarse-grain was also
applied to target assignment [48]. The multicolony model was
applied to multi-depot vehicle routing [105], emergency fleet
dispatching [55], bus network design [104], and weapon-target
assignment [62]. Both master-slave and multicolony have shown
an acceptable level of success to cope with the inherent difficul-
ties of those realistic situations.
Industrial and engineering design,  fields where complex functions
are used to evaluate the solutions. The coarse-grain master-
slave model have allowed the researchers to deal with these
kind of difficult problems where sequential ACO tend to perform

poorly or are difficult to apply. The problems solved with master-
slave ACOs include: packing problem [80], image restoration [79],
codebook design [64], pump scheduling [68], and radio frequency
antenna design [99].

able 6
arallel ACO proposals regarding the application domains.

Application area Publications

Journals Books/thesis Conferences Total

Combinatorial optimization 11 3 24 38
Real-life routing and planning 3 0 4 7
Industrial design 1 0 4 5
Bioinformatics 0 2 3 5
Telecommunications 2 0 2 4
Other scientific problems 1 0 6 7
Theoretical works 1 1 1 3
Total 19 6 44 69
y parallel computational platform.

• Bioinformatics,  where parallel models of ACO are helpful tools
to deal with computation-ally-intensive optimization problems
in molecular biology that often also needs to manage very large
amount of data. Multicolony ACO have been used with success in
protein structure prediction [26] and DNA sequencing [54], while
the master-slave ACO has also been applied to protein structure
prediction [51].

• Telecommunications, a field that have grown at a fast pace in
recent years, posing difficult challenges to the research commu-
nity due to the large size of the infrastructures, the need for
obtaining real-time results, etc. Multicolony, master-slave, and
the new cellular model have shown a great impact on facing
these challenges, providing accurate and efficient solutions to
the related optimization problems in network routing [66] and
network design [58,59,78].

Besides the application domains previously highlighted, paral-
lel ACOs have been recently applied to solve other real-life based
problems (as it was shown in Section 5). This fact demonstrates the
growing maturity of the research in parallel ACO models, and prob-
ably in the near future there will be many more real-life situations
tackled with parallel ACO algorithms.

8. Conclusions

This article presents a general overview of parallel ant colony
optimization and an exhaustive survey of the proposed imple-
mentations. It includes a conceptual discussion of these methods,
looking at different classification criteria and previous efforts to
develop categories for parallel ACO algorithms. The survey has been
the basis to develop a proposal for a new taxonomy, which is a help-
ful conceptual tool to both understand and organize the existing
work, and to identify possible areas for future research.

The work also includes an exhaustive review of the literature
in the area, starting from the pioneering works in parallel ACO,
up to the most recent proposals (up to December 31, 2010). The
reviewed papers are organized according to the new taxonomy,
and the main characteristics of the methods employed, as well as
the application problems and results obtained, are presented. The
discussion of each class concludes with a summary presenting its
main features and a list of general conclusions about the efficacy of
the corresponding methods. A comparative analysis regarding the

computational efficiency and quality of results is also presented.

The final section of the paper discusses some trends and per-
spectives about parallel ACO, including recommendations about
the most effective parallel models and implementations. It also
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rovides observations about the software issues and libraries,
he employed parallel platforms and the application domains,
hich can be a source of inspiration for future research in the
eld.
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