Har dwar e/Softwar e Partitioning using Integer Programming

Ralf Niemann, Peter Marwede

Dept. of Computer Science X
University of Dortmund
D-44221 Dortmund, Germany

Abstract

One of the key problems in hardware/software codesign
is hardware/software partitioning. This paper describes
a new approach to hardware/software partitioning using
integer programming (IP). The advantage of using IP is
that optimal results are cal culated respective to the chosen
objective function. The partitioning approach works fully
automatic and supports multi-processor systems, interfa-
cing and hardware sharing. In contrast to other approaches
where special estimatorsare used, we use compilationand
synthesis tools for cost estimation. The increased time for
calculating the cost metrics iscompensated by an improved
quality of the estimations compared to the results of estim-
ators. Therefore, fewer iteration steps of partitioning will
beneeded. The paper will showthat usinginteger program-
ming to solve the hardware/software partitioning problem
isfeasible and leads to promising results.

1 Introduction

Embedded systemstypically consist of application specific
hardware parts and programmable parts, i.e., processors
like DSPs, core processors or ASIPs. In comparison to
the hardware parts, the software parts can be developed
and modified much easier. Thus, softwareis less expens-
ive in terms of costs and development time. Hardware
however, provides better performance. For this reason, a
system designer’s goal is a system which fulfills all per-
formance constraints by using as few as possible hard-
ware. Hardware/software codesign deals with the problem
of designing embedded systems, whereautomatic partition-
ing isone key issue. This paper describes a new approach
in hardware/software partitioning for multi-processor sys-
tems working fully automatic. The approach is based on
integer programming (1P) to solve the partitioning problem
optimally. A formulation of the IP-model will be intro-
duced in detail. The drawback of solving IP-models often
is a high computation time. To reduce the computation
time, a second approach has been developed which splits

ED&TC'96
0-89791-821/96 $5.00 [1996 IEEE

the partitioning approach in two phases. In afirst phase, a
mapping of nodesto hardware or software is calcul ated by
estimating the schedul etimesfor each nodewith heuristics.
During the second phase acorrect scheduleis cal cul ated for
the resulting HW/SW-mapping of thefirst phase. 1t will be
shown that this heuristic scheduling approach strongly re-
duces the computation time while the results are nearly
optimal for the chosen objective function.

Another new feature of our approach isthe cost estima-
tiontechnique. Thecost model isnot cal culated by estimat-
orslikeother approaches, becausethequality of estimations
isoften bad and estimators do not concern compiler effects.
In our approach thetools (acompiler for the software parts
and a high-level synthesistool for the hardware parts) are
used instead of specia estimators. The disadvantage of an
increased runtime for calculating the cost metrics is com-
pensated by abetter quality of the cost metrics compared to
the results of estimators. Furthermore, better cost metrics
lead to fewer partitioning iterations.

Theoutlineof the paper isasfollows. Section 2 givesan
overview of related work in thefield of hardware/software
partitioning. In section 3 our own approach to partitioning
ispresented. A formulation of the hardware/software par-
titioning problem followsin section 4. Section 5 describes
the problem by an IP-model. After experimental results of
solving these | P-models have been presented in section 6,
aconclusionisgivenin section 7.

2 Related Work

There are only few approaches considering hard-
ware/software partitioning. One of these isthe COSY MA
system [EHB93], where hardware/software partitioning is
based on simulated annealing using estimated costs. The
partitioning a gorithmissoftware-oriented, becauseit starts
with afirst non-feasible sol ution consisting only of software
components. In an inner loop partitioning (ILP) software
parts of the system areiteratively realized in hardware until
al timing constraints are fulfilled. To handle discrepan-
cies between estimated and real execution time, an outer

loop partitioning (OLP) restartsthe ILP with adapted costs
[HE94]. The OLP is repeated until all performance con-
straints are fulfilled. Another hardware/software partition-
ing approach isrealized in the VULCAN system [GCM92].
This approach is hardware-oriented. It starts with a com-
plete hardware solution and iteratively moves parts of the
system to the software as long as the performance con-
straints are fulfilled. In this approach performance satis-
fiability is not part of the cost function. For this reason,
the agorithm will easily trap in aloca minimum. The
approach of Vahid [VGG94] uses a relaxed cost function
to satisfy performance in an inner partitioning loop and
to handle hardware minimization in an outer loop. The
cost function consists of avery heavily weighted term for
performance and a second term for minimizing hardware.
The authors present a binary-constraint search algorithm
which determines the smallest size constraint (by binary
search) for which a performance satisfying solution can
be found. The partitioning a gorithm minimizes hardware,
but not execution time. Kalavade and Lee [KL94] present
an agorithm (GCLP) that determines for each node iter-
atively the mapping to hardware or software. The GCLP
algorithm does not use a hardwired objective function, but
it selects an appropriate objective according a global time-
criticality measure and another measure for local optimum.
The results are close to optima and the runtime grows
quadratically to the number of nodes. This approach has
been extended to solve the extended partitioning problem
[KL95] including the implementation sel ection problem.

3 Hardware/Software Partitioning
Approach

Our hardware/software partitioning approach is depicted
in figure 1. The designer has to specify the target archi-
tecture by defining the set of processors for the software
parts and the component library to synthesize the hardware
parts. The system has to be defined in VHDL as a set
of interconnected instances of VHDL-entities. Moreover,
the designer has to determine the design constraints, con-
tai ning performance constraints (timing) and resource con-
straints (area, memory). Then, the VHDL specification is
compiled into an interna syntax graph model. For each
entity of thismodel, software source code (C or DFL) and
hardware source code (VHDL) is generated. The software
parts are compiled and the hardware parts are synthesi zed
by a high-level synthesis tool (OSCAR [LMD94]). The
results are software cost metrics (software execution time,
memory usage) and hardware cost metrics (hardware ex-
ecution time, areq) for the entities. The disadvantage of
an increased runtime for calculating the cost metrics is

‘ Target architecture definition ‘ ‘ VHDL system specificalion‘ ‘ Design constraints ‘

Syntax Graph Model

‘ C code generation ‘ ‘ VHDL code generation ‘
T

[I

‘ Raagaable(:nmpilalion‘ ‘ High-Level Synthesis ‘

‘ S\NOOS(S‘ ‘ HWCOS(S‘

Partitioning Graph

Solving ILP model
then
ValidPartitioning := Partitioning
Cluster SW nodes

Retargetable Compilation

Result := ValidPartitioning

Refine Partitioning Graph

Figure 1. Hardware/Software Partitioning

compensated by a better quality compared to the results of
estimators. Moreover, better cost metrics|ead to fewer par-
titioning iterations. After the compilation/synthesis phase
a partitioning graph is generated. Nodes represent the in-
stances of VHDL-entities of the system and edges rep-
resent the interconnections between them. The nodes are
weighted with the hardware and software costs, the edges
areweighted withinterface costswhich occur if aninterface
is used between the nodes of the edge. The interface costs
are approximated by the number and type of data flowing
between both nodes. The user-defined design constraints
are also matched to the graph. Thus, the partitioning graph
includesall information needed for partitioning. The parti-
tioning graph is then transformed into an |P-model, which
is the key issue of this paper. Afterwards, the model is
solved by an IP-solver. The calculated design is optimal
for the generated cost model, but neverthelessit ispossible
to improve the design, because sharing between different
instances of same entitiesis considered, but not sharing e&f-
fects between different entities. This disadvantage can be
removed by an iterative partitioning approach. We use a
software oriented approach, because compilation is faster
than synthesis and software oriented approaches seem to be
superior to hardware oriented approaches (see [VGG94]).
Sets of nodes which have been mapped on the same pro-
cessor are clustered. For each cluster a new cost metricis
caculated by compiling al nodes of the cluster together.
Then, the partitioning graph is transformed by replacing
each cluster by a new node attached with the new cost

metric. Finaly, the redefined graph is repartitioned. This
iteration will be repeated until no solutionis found. The
last valid partitioning represents the resulting design. The
clustering techniqueisillustrated in figure 2.

Partitioning

Figure 2; Partitioning refinement

4 Formulation of the HW/SW Parti-
tioning Problem

This section introduces a formulation of the hard-
ware/software partitioning problem. This formulation is
necessary to simplify the description of the problem with
the help of an IP-model. We have to define the target ar-
chitecture used to realize the system and the system itself
which has to be partitioned.

Definition 4.1 The target architecture consists of an
ASIC h, a set of processors P = {pi,...,pn,}, External
memory and busses between them. The set of target archi-
tecture componentsisdefinedas. 7.4 = {h} UP.

To simplify the notationsin the following chapters, let the
ASIC bethefirst edement of 7.4 withindex 0, followed by
the processors: tag := h;tag := pp,Vk € {1,...,np}.

Definition 4.2 A system is defined as a tuple S =
(&,V, E, I') with the following definitions:

E = {eny, ..., en, .} defines the set of entities. The set
of nodesV = {vy,..., vy, } consstsof instances of entit-
ies, defined by the function I : V' — £. The set of edges
E C V x V represents theinterconnecti onsbetween nodes.

The following cost metrics are defined for each entity
eni: c?(en;) represents the hardware area, ¢'*(en;) the
hardware execution time, ¢ (en;) the used software data
memory, ¢*™ (en;) the used software program memory and
c¢**(en;) the software execution time. The costs ¢*(v;),
cth(vj), cdm(vj), ™ (v;) and ¢**(v;) for the instances v;
of an entity en; are equd to the costs of en;:

I(vy) = enyg = c¥(eny) = ¢ (vy) @

The following interface costs for an edge e = (vy, v2)
areconsidered: ¢i(e) definestheadditional hardware area
and ci' () defines the communication time for e.

A design represents the redization of a system S
on a target architecture 7.4. The design quality can
be expressed by the following design metrics. C“(5)
represents the hardware area, C?™(S) the used soft-
ware program memory, C'¥™(S) the used software data
memory and C*(S) the total execution time of S. The
set of design constraints C consists of M AX?(S),
MAXP™(S), MAX9(S) and M AX*(S) according to
the design metrics of S.

Definition 4.3 The hardware/software par-
titioning problem is the problem of finding a mapping
map : V — TA in such a way that all performance
and resource constraints are fulfilled and the design costs
are minimized.

The definitionswill be used in the following example:
Example 1

tad tal

Target Architecture

HW/SW-

Specification @ Partitioning

Entities|

System
Figure 3; Unpartitioned system

In figure 3 a system is specified consisting of 2 entities en

(circle), ens (box) and 7 instances v, . . ., v7 Of these entit-
ies. This system will be partitioned for a target architecture
containingone ASIC, one DSP, memory and abusconnecting
these components.

5 ThelP-Mod€

Linear optimization problems can be solved optimally by
using integer programming (IP). This paper will show that
our IP-model is able to solve the hardware/software par-
titioning problem with the following characteristics: mul-
tiprocessor systems are supported, timing constraints are
guaranteed, interface costs are included, sharing effects
between different instances of the same entity are con-
sidered, and user constraints can be adapted easily. To
describe the IP-mode the following notations are neces-
sary:

Definition 5.1 Let J = {1, ..., ny} represent the indices
of v; € V, K = {0,...,np} the indices of eements
ta, € TAand L = {1,...,ng} theindices of edements
en; € £.

Let ¢f, be the cost metric ¢”(en;) for entity en; and cf
the cost metric ¢?(v;) for node v; on target architecture
component tay,.

Let C7 bethe system cost C¥(.S) on tay of system S and
M AX} theaccording maximumof C7.

Let 77 bethe execution starting time of node v; .

Let TP be the execution time of node v; .

Let T be the execution ending time of node v; .

5.1 TheDecision Variables

Our IP-modéd uses the following O/1-variagbles:

Definition 5.2 Let the following 0/1-variables be defined
as:

v; is not shared on tag,

Tig = .
5,0 otherwise.

v; is shared on hardware tao,

processor tay(k > 1) executes v;,

otherwise.

Yk =

en; 1s shared on hardware tag,
Shlyk =
otherwise.

v;, and v;, need an interface,

1o = .
J1.02 otherwise.

—_ O Ok R O = O

vj,, v;, are executed on

different components,

v;, ends before v;, starts on tay,
0 : otherwise.

bjrjok =

—_

|
|
|
|
|

Example2:

v, Timing Diagram

V6
N5
v4

v3

v2
K%

Resour ce Diagram
v5,v6
v2 v4Vv7|

vl v3
memory area

costs

resource

Figure 4; Partitioned system

The result of hardware/software partitioning of the system
depicted in figure 3 is shown in figure 4. Gray shaded nodes

are realized in hardware. Shared nodes are enclosed by a
dashed line. The following table shows the 0/1-variablesfor
executing nodes shared or not shared on hardware or soft-
ware.

v; —
HW/SW var vi | ve | va | va | vy | we | vr
unsharedHW | ;o
shared HW Y5,0
SwW Yg,1

k=lk=]
k=lk=]
o| O
o| O
o| O
o| O
o| O

The nodes v; and v, are executed on the processor ta;
(y171 = Y2,1 = 1). Therefore, Sh171 = Sh271 =1, be-
causev; isof entity typeen; andw, isof entity typeens. s
is executed unshared on the hardware (3 o = 1). The other
four nodes vy, . . ., vy are executed shared on the hardware.
Intotal, 2 interfaces are needed: iy 4 = 41,3 = 1. Thetim-
ing diagram shows that unshared nodesin hardware (v3) can
be executed in parallel to instances of the same entity (v4).
Shared nodes (vs, vg) haveto be sequentialized, but result in
less hardware area as shown in the resource diagram.

5.2 TheCongtraints
The following constraints have to be fulfilled:

1. General Constraints: Each node v; is executed ex-
actly on onetarget architecture component tay, .

processor tay(k > 1) executes eny,

Vi€eJ:

x50 + Z Y e =1 @)

keK

2. Resource Constraints: The values for used data
memory C¢™ (eq. 3) and program memory C7™
(eg. 4) on each processor tay may not exceed agiven
maximum. The used hardware area C'§ (eg. 5) isthe
sum of hardware area of unshared instances, shared
entities, and the total interfacearea C'I§ (eq. 14). C§
may not exceed a given maximum.

vk e K\{0}: Cfm= Z shig = e < MAXI™ (3)
leL

CP™ =y " shy w7 < MAXE™ (4
leL

Vi € K\{0}:

Ce = wjoxclo+ Y shioxcfy+ CIf < MAXE (5)
jeJ leL

3. Timing Constraints:
The timing costs cannot be calculated by accumulat-
ing the execution time of the nodes, because nodes,
that are not shared on the ASIC can be executed in
paralel. To determine the starting time and ending
time for each node, scheduling has to be performed.
The execution time 7}” (eq. 6) of v, is either the

hardware or the software execution time. The end-
ing time 7} (eq. 7) is the sum of starting time 77
and execution time 7'”. The starting times 777 (eq.
9) of nodes have to be in their ASAP/ALAP-range
which can be calculated in a preprocessing step. Data
dependencies (eg. 10) have to be considered for al
edges e = (v;,,v;,) including interface communica-
tiontime T]I1 ;, of equation 12. The system execution
time C! (eg. 11) isthe maximum of al ending times
and may not violate the constraint.

Vi€ J:Ve=(vy,,v5,) € E:
TJD = TH0* CE% + Y50 * CE% + Z Yik* CE’Sk ©)
keK\{o}
E _ S D
TF = 17 +1] O
®
ASAP(v;) < TF < ALAP(v;) ©)
S E I
Iy, 2 T +15 5, (10)
TP < C'<MAX! (1)

5.3 Interfacing

An interface has to be redized for an edge e = (v;,, v;,),
if v;, and v;, are realized on different target architecture
components. This fact is formulated with help of addi-
tional constraints for the interface O/1-variable i;, ;, (see
[NM95]). Then, the following interface costs can be cal-
culated: interface execution timeT]I1 ., (e9. 12), interface
hardwareareaA}’m2 (eg. 13), and thearea of all interfaces

C1I¢ (eq. 14).

Ve = (vj,,vj,) € E:

I . .
TJ17J2 = trge * CZ§17J2 (12)
I . .
AJ17J2 = g * 02?17]2 13)
— I
Clg = Z AJ17J2 (14

e=(vj,,v5,)EE

54 Sharing

An entity en; is shared on hardware tay (eg. 15), if at
least two nodes v;, , v;, which are instances of entity en;
are executed shared on tay. An entity en; is shared on
processor taj, (eg. 16), if at least oneinstance of entity en;
is executed on tay,.

Vie L:Vji,j2 €J:I(vy,) =I(vy,) = eny :
shi,0 2 Y510 + 4500 — 1 (15)

Vke K\{0}:Vie L:VjeJ:I(vj)=eny:
shig 2 Y5k (16)

5.5 Scheduling

If two nodes v;,, v;, should be sequentidized, then the
scheduling variables b;, ;. » and b;, ;, » have to be dif-
ferent, otherwise both have to be 1. The additional con-
straintsfor b;, ;, » adb;, ;, aredefinedin[NM95]. With
bi, .. k405, 51,% NODES can be sequentialized (eq. 17,18) by:

vVke K : Tjsi > T]E2 —00x by 4ok an
S E
T]2 > le — 00 xbj, 4k (18)

5.6 Heuristic Scheduling

Optimal scheduling of the nodes is a complex problem,
because the number of the 0/1-variables b;, ;, » can grow
quadraticaly in the number of nodes. An idea to solve
this problem is to execute partitioning while iterating the
following steps:

1. Solvean |P-modé for the hardware/software mapping
with help of approximated time values.

2. Solve an IP-model for calculating an exact schedule
with nodes mapped to hardware or software.

3. Iftheresulting total timeviolatesthetiming constraint,
repeat the first two steps with a timing constraint that
is tighter than the approximated total time of step 1.
(seefigure5).

Exact +
CONSTRAINT [
Approximation |-

71 Exact

-=- new Constraint
“T Approximation

T

Y

1. Iteration 2.Iteration
Figure5: Heuristic scheduling

Thefollowing constraintsare used additionally to the equa-
tions 6-11 to approximate time values:

e The starting time T]»S of anodev; isequal or grester
than the accumulated software execution times of al
predecessor nodes v; .

° TjS isequal or greater than the accumulated hardware
execution times of all shared predecessor nodes of v; .

° TjS is equa or greater than the sum of the ending
time of each dominator node v; of v; and the software
execution times on processor ta;, of all nodes on the
paths between v; and v;.

° TjS isequal or greater than the sum of the ending time
of each dominator node v; of v; and the hardware exe-
cution times of all shared nodes on the paths between
V; and v .

The correct constraints can be found in[NM95].

6 Reaults

The interesting parameter for partitioning is the number
of nodes n which have to be partitioned. For this reason,
we have developed some examples containing a lot of in-
stances of small VHDL -entities. Thetarget architecturefor
all examples consistsof aprocessor, an ASIC, memory and
a bus connecting all components. All caculated partition-
ings concern interface costs and sharing effects between
nodes. The computation times of the examples represent
CPU seconds on a Sun SPARCstation20.

The heuristic partitioning approach can be evaluated by
examining

¢ thequality and
o the computation time

compared to the optimal result.

The quality of the heuristic approach can be evaluated
by determining the deviation between the exact and the ap-
proximated solution. If the heuristic partitioning approach
does not consider interfacing, then the results are aways
exact, and therefore optimal. If interfacing is considered
however, then the approximated system execution timemay
differ from the exact value. Therefore, we have partitioned
6 different systems (seefigures6,8) withtheoptima andthe
heuristic approach. For each system, solutions have been
calculated for aset of constraints. Infigure6itisshownthat
the approximated execution time is equal or very close to
the exact value. The maximal deviation between the exact
and the approximated execution timeis5.13%, the average
deviation is smaller than 1% for all examined systems.

In contrast to the partitioning quality, the computation
times are very different. Figure 7 depicts the computation

—e—n=19 (optimal)
—m—n=19 (heuristic)
n=16 (optimal)
n=16 (heuristic)
—%—n=13 (optimal)
—8—n=13 (heuristic)
—+—n=10 (optimal)
—=—n=10 (heuristic)
n=7 (optimal)
n=7 (heuristic)
n=4 (optimal)
n=4 (heuristic)

system execution time [ns]

0 +—+—+—+—+—+

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19

design number

Figure6: System execution time (exact/heuristic approach)

N
o
=3

N
o
S

=
a
<}

—e—optimal
—=— heuristic

.
o
S

@
o

IP-solver computation time [s]

o
F
4
1
4
L
4

1 2 3 4 5 6 7 8

design number

Figure 7: Computation time (exact/heuristic approach)

times of both approaches for a system, which consists of 7
nodes. This system has been partitioned for 8 different sys-
tem execution time constraints. The maximal computation
time is 246 seconds for the optimal partitioning approach
and 2 seconds for the heuristic one, i.e., computation time
isdrastically decreased. In figure 8 the computation time

[s]

IP-solver computation time

design number 19

Figure 8: Computation times of the heuristic approach

of the heuristic approach is depicted for 6 different sys-
tems. For al of these systems severa different designs
have been calculated with help of aset of system execution
time constraintsfor each system.

It becomes clear, that the heuristic approach is super-
ior to the optimal approach, because the results are aways
nearly optimal and thecomputationtimeshavebeendrastic-
ally reduced.

7 Conclusion

This paper presentsanew approach of full-automated hard-
ware/software partitioning supporting multi-processor sys-
tems, interfacing and hardware sharing. The partitioning
approach itsdlf is based on integer programming leading
to optimal results. In contrast to other approaches, where
hardware and software costs are estimated, our approach
follows the idea of 'using the tools' for cost estimation.
The disadvantage of an increased calculation time is com-
pensated by better metrics and therefore fewer iteration
steps. The presented results are very promising, because
nearly optimal results are calculated in short time. Fu-
turework will deal with design studies of real system level
examples.

References

[EHB93] Rolf Ernst, Jorg Henkel, and Thomas Benner.
Hardware-software cosynthesis for microcontrollers.
|EEE Design & Test, Vol.12, pages 6475, 1993.

[GCM92] Raesh K. Gupta, Claudionor Nunes Coelho Jr.,
and Giovanni De Micheli. Synthesis and simulation
of digital systemscontaining interacting hardwareand
software components. 29th ACM, |EEE Design Auto-
mation Conference, pages 225-230, 1992.

[HE94] D.Henke J. Herrmann and R. Ernst. An approach
to the adaption of estimated cost parameters in the
cosyma system. Third International Workshop on
Hardware/Software Codesign, Grenoble, pages 100—
107, 1994.

[KL94] Asavaree Kdavade and Edward A. Lee. A
global critically/local phase driven algorithm for the
constrained hardware/software partitioning problem.
Third International Workshop on Hardware/Software
Codesign, Grenoble, pages 42-48, 1994.

[KL95] Asawaree Kdavade and Edward A. Lee. The
extended partitioning problem: Hardware/software
mapping and implementati on-bin sel ection. Proceed-
ings of the 6th International Workshop on Rapid Sys-
tems Prototyping, 1995.

[LMD94] B. Landwehr, P Marwedel, and R. Domer.
OSCAR: Optimum Simultaneous Scheduling, Alloc-
ation and Resource Binding Based on Integer Pro-
gramming. Proceedings of the EURO-DAC, pages
90-95, 1994,

[NM95] R. Niemann, and P Marwedd. Hard-
ware/Software Partitioning using Integer Program-

ming. Technical Report 586, Dept. of Computer Sci-
ence Xll, University of Dortmund, 1995.

[PK93] Zebo Peng and Krzysztof Kuchcinski. An al-
gorithm for partitioning of application specific sys-
tems. Proceedings of the European Conference on
Design Automation (EDAC), pages 316-321, 1993.

[VGG94] Frank Vahid, Je Gong, and Daniel Gajski.
A binary-constraint search agorithm for minimiz-
ing hardware during hardware/software partitioning.
European Design Automation Conference (EURO-
DAC), pages 214-219, 1994,

	CDROM Home Page
	1996 Home Page
	EDTC 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

