
A Dynamically Constrained Genetic Algorithm For
Hardware-software Partitioning

Pierre-André Mudry Guillaume Zufferey Gianluca Tempesti

École Polytechnique Fédérale de Lausanne
Cellular Architectures Research Group

Station 14, 1015 - Lausanne, Switzerland
Email : pierre-andre.mudry@epfl.ch

ABSTRACT
In this article, we describe the application of an enhanced genetic
algorithm to the problem of hardware-software codesign. Start-
ing from a source code written in a high-level language our algo-
rithm determines, using a dynamically-weighted fitness function,
the most interesting code parts of the program to be implemented in
hardware, given a limited amount of resources, in order to achieve
the greatest overall execution speedup. The novelty of our approach
resides in the tremendous reduction of the search space obtained
by specific optimizations passes that are conducted on each gener-
ation. Moreover, by considering different granularities during the
evolution process, very fast and effective convergence (in the order
of a few seconds) can thus be attained. The partitioning obtained
can then be used to build the different functional units of a proces-
sor well suited for a large customization, thanks to its architecture
that uses only one instruction, Move

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids; C.0 [Computer Systems Or-
ganization]: General—systems specification methodology

General Terms
Algorithms, design

Keywords
Constrained Hardware–Software partitioning, TTA processor, ge-
netic algorithm

1. INTRODUCTION AND MOTIVATIONS
As very efficient heuristics, genetic algorithms (GAs) have been

widely used to solve complex optimization problems. However,
when the search space to be explored becomes very large, this tech-
nique becomes unapplicable or, at least, inefficient. This is the case
when GAs are applied to the partitioning problem, which is one of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

the tasks required for the hardware-software codesign of embedded
systems.

Consisting in the realization, at the same time, of the hardware
and the software layers of an embedded system, codesign has been
used since the early 90s and is now a technique widely spread in the
industry. This design methodology permits to exploit the different
synergies of hardware and software that can be obtained for a par-
ticular embedded system. Such systems are usually built around a
core processor that can be connected to hardware modules tailored
for a specific application. This “tailoring” corresponds to the code-
sign of the system and consist in different tasks, as defined in [8]:
partitioning, co-synthesis, co-verification and co-simulation.

In this article, we will focus on the complex, NP-complete [15],
partitioning problem that can be defined as follows: starting from a
program to be implemented on a digital system and given a certain
execution time and/or size constraints, the partitioning task consists
in the determination of which parts of the algorithm have to be
implemented in hardware in order to satisfy the given constraints.

As this problem is not new, several methods have been proposed
in the past to solve it: Gupta and De Micheli start with a full hard-
ware implementation [7], whilst Ernst et al. [6] use profiling results
in their Cosyma environment to determine with a simulated anneal-
ing algorithm which blocks to move to hardware. Vahid et al. [20]
use clustering together with a binary-constrained search to mini-
mize hardware size while meeting constraints. Others have pro-
posed approaches like fuzzy logic [2], genetic algorithms [4][17],
hierarchical clustering [12] or tabu search [5] to solve this task.

In this article, we will show that despite the fact that standard
GAs have been shown in the past to be less efficient than other tech-
niques such as simulated annealing to solve the partitioning task
[21][22], they can be hybridized to take into account the particular-
ities of the problem and solve it efficiently. The improved genetic
algorithm we propose starts from a software tree representation and
progressively builds a partition of the problem by looking for the
best compromise between raw performance and hardware area in-
crease. In other words, it tries to find the most interesting parts of
the input program to be implemented in hardware, given a limited
amount of resources.

The novelty of our solution resides in the multiple optimiza-
tion steps applied on the population at each generation along with
a dynamically-weighted fitness function. Thus, we obtain an hy-
bridized algorithm that explores only the most interesting parts of
the solution space and, when good candidates are found, refines
them as much as possible to extract their potential.

This paper is organized as follows: in the next section we briefly
present the TTA processor architecture that serves as a target plat-
form for our algorithm. The following section is dedicated to the

769

formulation of the problem in the context of a genetic algorithm
and section 4 describes the specific enhancements that are applied
to the standard GA approach. Afterwards, we present some exper-
imental results which show the efficiency of our approach. Finally,
section 6 concludes this article and introduces future work.

2. THE TTA PARADIGM
We have developed our new partitioning method in the context

of the Move processor paradigm [1] [3] which will be briefly in-
troduced here. However, our approach remains general and could
be used for different processor architectures and various reconfig-
urable systems with only minor changes.

Figure 1: General architecture of a TTA processor.

The Move architecture, which belongs to the class of transport
triggered architectures (TTA), presents some interesting charac-
teristics. This family of architectures was originally intended for
the design of application-specific dataflow processors (processors
where the instructions define the flow of data, rather than the oper-
ations to be executed).

In many respects, the overall structure of a TTA-based system
is fairly conventional: data and instructions are fetched to the pro-
cessor from the main memory using standard mechanisms (caches,
memory management units, etc. . .) and are decoded as in conven-
tional processors. The basic differences lay in the architecture of
the processor itself, and hence in the instruction set.

Rather than being structured, as is usual, around a more or less
serial pipeline, a Move processor (Fig. 1) relies on a set of func-
tional units (FUs) connected together by one or more transport
busses. All computation is carried out by the functional units (ex-
amples of such units can be adders, multipliers, register files, etc.)
and the role of the instructions is simply to move data to and from
the FUs in the order required to implement the desired operations.
Since all the functional units are uniformly accessed through input
and output registers, instruction decoding is reduced to its simplest
expression, as only one instruction is needed: move.

TTA move instructions trigger operations that in fact correspond
to normal RISC instructions. For example, a RISC add instruction
specifies two operands and, most of the time, a result destination
register. The Move paradigm requires a slightly different approach
to obtain the same result: instead of using a specific add instruc-
tion, the program moves the two operands to the input registers of
a functional unit that implements the add operation. The result can
then be retrieved from the output register of the functional unit and
used wherever needed.

The Move approach, in and for itself, does not imply high perfor-
mance, but several arguments in favor of TTAs have been proposed
[3][11]:

• The register file traffic is reduced because the results can be
moved directly from one FU to another;

• Fine-grained instruction level parallelism (ILP) is achievable
through VLIW encoded instructions;

• Data moves are determined at compile time, which could be
used to reduce power consumption;

Figure 2: General flow diagram of our genetic algorithm.

• New instructions, in the form of functional units (FU), can
be added easily.

The latter advantage, along with the fact that the architecture
handles the functional units as “black boxes”, i.e. without any
inherent knowledge of their functionality, implies that the inter-
nal architecture of the processor can be described as a memory
map which associates the different possible operations with the ad-
dresses of the corresponding functional units.

This feature, coupled with the algorithm described in this pa-
per, introduce in the system an interesting amount of flexibility by
specializing the instruction set (i.e., with ad-hoc functional units)
to the application while keeping the overall structure of the pro-
cessor (fetch and decode unit, bus structure, etc.) unchanged. A
soft-core processor based on this concept has been previously de-
veloped in [18] to explore various bio-inspired paradigms. Among
other things, this architecture also has been identified as a good
candidate for building ontogenetic processors [18], that is, proces-
sors that could self-assemble from basic building blocks according
toa small set of instructions.

Because of the versatility of Move processors, automatic parti-
tioning becomes indeed very interesting for the synthesis of onto-
genetic, application-specific processors: the partitioning can auto-
matically determine which parts of the code of a given program
are the best candidates to be implemented as FUs that can then be
inserted in the memory map of the processor.

3. A BASIC GENETIC ALGORITHM FOR
PARTITIONING

We describe in this section the basic GA that serves as a basis
for our partitioning method and that will be be enhanced in sec-
tion 4 where the specific improvements we have introduced will be
described. The basic algorithm, whose flow diagram is depicted
on Fig. 2, works as follows: starting from a program written in a
specific language resembling C, a syntactic tree is built and then an-
alyzed by the GA which then produces a valid, optimized partition.
The various parameters of the GA can be specified on the graphi-
cal user interface that has been designed, like every other software
described here, in Java.

3.1 Programming language and profiling
Assembly could have been used as an input for our algorithm

but the general structure of a Move assembly program is difficult
to capture because every instruction is considered only as a data

770

Figure 3: Genome encoding.

displacement, introducing a great deal of complexity in the repre-
sentation of the program’s functionality. Thus, the programs to be
evolved by the GA are written in a simplified programming lan-
guage that supports all the classical declarative language constructs
in a syntax resembling C. Several limitations have however been
imposed to this programming language:

1. Pointers are not supported;

2. Recursion is forbidden;

3. No typing exists (all values are treated as 32 bits integers).
As a result, only fixed-point or integer calculations can be
conducted.

These simplifications permitted us to focus on the codesign par-
titioning problem without having to cope with unrelated complica-
tions. However, it should be noted that these limitations could be
lifted in a future release of our partitioner.

Prior to being used as an input for the partitioner, the code needs
to be annotated with code coverage information. To perform this
task, we use standard profiling tools on a Java equivalent version
of the program. This step provides an estimation of how many
times each line is executed for a large number of realistic input
vectors. With the data obtained, the general program execution
scheme can be estimated, which will allow the GA to evaluate the
most interesting kernels to be moved to hardware.

3.2 Genome encoding
Our algorithm starts by analyzing the syntax of the annotated

source code. It then generates the corresponding program tree,
which will then constitute the main data structure the algorithm
will work with. From this structure, it builds the genome of the
program, which consists of an array of boolean values. This ar-
ray is constructed by associating to each node of the tree a boolean
value indicating if the subtree attached to this node is implemented
in hardware (Fig. 3, column a). Since we also want to regroup in-
structions together to form new FUs, to each statement1 correspond
two additional boolean values that permit the creation of groups of
adjacent instructions (Fig. 3, column b). The first value indicates if
a new group has to be created and, in that case, the second value in-
dicates if the whole group has to be implemented in hardware (i.e.
to create a new FU).

The complete genome of the program is then formed by the con-
catenation of the genomes of the single nodes. An example of a
program tree with its associated genome is represented on Fig. 4,
which depicts the different possible groupings and the representa-
tion of the data the algorithm works with.

1Statements are assignments, for, while, if, function calls. . .

Figure 4: Creation of groups according to the genome.

3.3 Genetic operators

3.3.1 Selection
The GA starts with a basic population composed of random indi-

viduals. For each new generation, individuals are chosen for repro-
duction using rank-based selection with elitism. In order to ensure
a larger population diversity, part of the new population is not ob-
tained by reproduction but by random generation, allowing a larger
exploration of the search space.

3.3.2 Mutation
A mutation consists in inverting the binary value of a gene. How-

ever, as a mutation can affect the partitioning differently, depending
on where it happens among the genes, different and parameteriz-
able mutation rates are defined for the following cases:

1. A new functional unit is created;

2. An existing functional unit is destroyed. The former hard-
ware group is then implemented in software;

3. A new group of statements is created or two groups are merged
together.

Using different mutation rates for the creation and the destruction
of functional units can be very useful. For example, increasing the
probability of destruction introduces a bias towards fewer FUs.

3.3.3 Crossover
Crossover is applied by randomly choosing a node in each par-

ent’s tree and by exchanging the corresponding sub-trees. This cor-
responds to a double-point crossover and it is used to enhance the
genetic diversity of the population.

3.4 Determining hardware size and execution
time

Computing hardware size and execution time is one of the key
aspects of the algorithm, as it defines the fitness of an individual.
Different techniques exist to determine these values, for example in
[9] or in [19]. The method we chose to use is based on a very fine
characterization of each hardware elementary building block of the
targeted hardware platform. In the current implementation we use a
Virtex� II field-programmable gate array (FPGA), which is a pro-
grammable chip containing logic elements that can be configured
to act like processors or other digital circuits.

771

The characterization of each of these building blocks that con-
duct very simple logical and arithmetic operations (AND, OR, +,
. . .) allows then to arrange them together to elaborate more com-
plex operations that form new FUs in the Move processor. For ex-
ample, it is possible to reduce the execution of several software in-
structions to only one clock cycle by chaining them in hardware as
depicted on Fig. 5 (note that the shift operation used in the example
is “free” (no slices2 are used) in hardware because only wires are
required to achieve the same result). This simple example shows
the principles of how the basic blocks are chained and how hard-
ware size and execution time are predicted.

Figure 5: Hardware time and size estimation principle of a soft-
ware instruction.

The basic blocks’ size and timing metrics have been determined
using the Synplify Pro� synthesis solution coupled, in some cases,
with the Xilinx� place-and-route tools. Thus, we have obtained the
number of slices of the FPGA required to implement each block
and the length of the critical path of each basic block. Because this
characterization mostly depends on the architecture targeted and on
the software used, it has to be redone for each different hardware
platform targeted.

This very detailed characterization permitted us to take into ac-
count a wide range of timings, from sub-cycle estimates for com-
binational operators to multi-cycle, high latency operators such as
pipelined dividers for example. Area estimators were built using
the same principles. Using these parameters, determining size and
time for each sub-tree is then relatively straightforward because
only two different cases have to be considered:

1. For software sub-trees, the estimation is done recursively
over the nodes of the program tree, adding at each step the
appropriate execution time and potential hardware unit: e.g.
the first time an add instruction is encountered, an add FU
must be added to compose the minimal processor necessary
to execute this program.

2. For hardware sub-trees, the computation is a bit more com-
plex because it depends on the position of the considered
sub-tree: if it is located at the root of a group, it constitutes
a new FU and some computation is needed. In fact, the time
to move the data to the new FU and the size of the regis-
ters required for the storage of the local variables have to
be taken into account. Moreover, as every FU is connected
to the rest of the processor using a standard bus interface, its
cost also has to be considered. Finally, if this unit is used sev-
eral times, its hardware size has to be counted only once: to
determine if the generated FU is new, its sub-trees are com-
pared to the ones belonging the pool of the already available
FUs.

2Slices are the fundamental elements of the FPGA. They charac-
terize the how much space for logic is available on a given circuit.
The name and implementation of these elements differ from one
vendor to one another.

Figure 6: Ideal fitness landscape shape.

3.5 Fitness evaluation

3.5.1 A static fitness function
The objective of the GA is to get the partitioning with the small-

est execution time whilst remaining smaller than an area constraint.
To achieve this, the fitness function used to estimate each individual
needs to have high values for the candidates that balance well the
compromise between hardware area and execution speed. Because
we made the assumption that the basic solution for the partitioning
problem relies on a whole software implementation (that is, using
only a simple processor that contains the minimum of hardware
required to execute the program to be partitioned), we use a rela-
tive fitness function. This means that this simple processor, whose
hardware size is β, has a fitness of 1 and the fitness of the discov-
ered solutions are expressed in terms of this trivial solution. We
also define α, the time to execute the given program on this trivial
processor. For an individual having a size s and requiring a time t
to be executed, the following fitness function can then be defined:

f(s, t) =
α
t
· β

s
If s ≤ hwLimit

(log (s − hwLimit) + 1)−1 otherwise

where hwLimit is the maximum hardware size allowed to imple-
ment the processor with the new FUs defined by the partitioning
algorithm.

The first ratio appearing in the top equation corresponds to the
speedup obtained with this individual and the second ratio corre-
sponds to its hardware size increase. Therefore, the following be-
haviour can be achieved: when the speed increase obtained during
one step of the evolution is relatively bigger than the hardware in-
crease needed to obtain this new performance, the fitness increases.
In other words, the hardware investment for obtaining better perfor-
mance has to be small enough to be retained.

3.5.2 A dynamic fitness function
One drawback of the static fitness function is that it does not nec-

essarily use the entire available hardware. As this property might
be desirable, particularly when a given amount of hardware is avail-
able and would be lost if not used, we introduce here a dynamically
weighted fitness function that can cope with such situations. In fact,

772

we have seen that the static fitness function increases only when the
hardware investment is balanced by a sufficient speedup.

To go further, our idea is to push evolution towards solutions that
use more hardware by modifying the balance between hardware
size and speedup in the fitness function. This change has to be
done only when a relatively good solution has been found, as we
do not want the algorithm to be biased towards solutions with a
large hardware cost at the beginning of the evolution.

To achieve this goal, a new dynamic parameter is added to the
static fitness function and permits more expensive blocks to be used
as good solutions are found. For an individual having an hardware
size of s, we first compute the adaptive factor k using the following
equation:

k =
hwLimit − s

hwLimit

We then compute the individual fitness using that adaptive factor in
the a refined fitness function:

f(s, t) =
α
t
· (k · β

s
− k + 1) If s ≤ hwLimit

(log (s − hwLimit) + 1)−1 otherwise

where α, β, and hwLimit have the same meaning as in the
static function. Thus, we obtain the fitness landscape shown on
Fig. 6, which clearly shows the decrease of the fitness when a given
hwLimit (on the example given, about 19000) is exceeded. The
figure also clearly shows the influence of the k factor which is re-
sponsible for the peak appearing near the hwLimit.

4. AN HYBRID GENETIC ALGORITHM
All the approaches described in the introductory section work at

a specific granularity level3 that does not change during the code-
sign process, that is, these partitioners work well only for certain
types of inputs (task graphs for example) but cannot be used in
other contexts. However, more recent work [10] has introduced
techniques that can cope with different granularities during the par-
titioning. Because of the enormous search space that a real-world
application generates, it is difficult for a generic GA such as the
one we just presented to be competitive against state-of-the-art par-
titioning algorithms. However, we will show in the rest of this sec-
tion that it is possible to hybridize (in the sense of [16]) the pre-
sented GA to considerably improve its performance.

4.1 Leveling the representation via hierarchi-
cal clustering

One problem of the basic GA described above lies in the fact that
it implicitly favors the implementation in hardware of nodes close
to the root. In fact, when a node is changed to hardware its whole
sub-tree is also changed and the genes corresponding to the sub-
nodes are no longer affected by the evolutionary process. If this
occurs for an individual that has a good fitness, the evolution may
stay trapped in a local maximum, because it will never explore the
possibility of using smaller functional units within that hardware
sub-tree.

The solution we propose resides in the decomposition of the pro-
gram tree into different levels that correspond to blocks in the pro-
gram4, as depicted on Fig. 7. Function calls have the level of the
called function’s block and a block has level n + 1 if the high-
est level of the block or function calls it contains is n, the deepest
blocks being at level 0 by definition. These levels represent in-
teresting points of separation because they often correspond to the

3Function level, control level, dataflow level, instruction level. . .
4Series of instructions delimited by brackets

Figure 7: Levels definition.

most computationally intensive parts of the programs (e.g. loops)
that are good candidates for being implemented in new FUs.

The GA is recursively applied to each level, starting with the
deepest ones (n = 0). To pass information between each level,
the genome of the best individual evolved at each level is stored. A
mutated version of this genome is then used for each new individual
created at the next level.

This approach permits to construct the solution progressively by
trying to find the optimal solution of each level. It gives priority
to nodes close to the leaves to express themselves, and thus good
solutions will not be hidden by higher level groups. By examin-
ing the problem at different levels we obtain different granularities
for the partitioning. As a result, with a single algorithm, we cover
levels ranging from instruction level to process level (cf. [10] for a
definition of these terms). This specific optimization also dramat-
ically reduces the search space of the algorithm as it only has to
work on small trees representing different levels of complexity in
the program. By doing so, the search time is greatly reduced while
preserving the global quality of the solution.

4.2 Pattern-matching optimization

Figure 8: Candidates for pattern-matching removal.

773

Figure 9: Exploration during the evolution.

A very hard challenge for evolution is to find reusable functional
units that can be employed at different locations in a program. Two
different reasons explain this difficulty, the first being that even if a
block could be used elsewhere within the tree, the GA has to find it
only by random mutations. The second reason is that it is possible
that, although one FU might not be interesting when used once,
it would become so when reused several times because the initial
hardware investment has to be made only once.

To help the evolution to find such blocks, a pattern matching
step has been added: every time a piece of code is transformed in
hardware, similar pieces are searched in the whole program tree
and mutated to become hardware as well. This situation is depicted
on Fig. 8: starting from an implementation using one FU (Fig. 8.a),
this step searches for candidates sub-trees that show a structure sim-
ilar to the existing FU. A perfect match is not required: variables
values, for example, are passed as parameters to the FU and can
differ (Fig. 8.b). Finally, the software sub-tree is simply replaced
by a call to that FU (Fig. 8.c). Reusability is thus greatly improved
because only one occurrence of a block has to be found, the others
being given by this new step.

4.3 Non-optimal block pruning
Another help is given to the algorithm by cleaning the best indi-

vidual of each generation. This is done by removing all the non-
optimal hardware blocks from the genome. These blocks are de-
tected by computing, for each block or group of similar blocks, the
fitness of the individual when that part is implemented in software.
If the latter is bigger or equal than the original fitness, it means that
the considered block does not increase or could even decrease the
fitness and is therefore useless. The genome is thus changed so that
the part in question is no longer implemented as a functional unit.

This particular step, could be considered as a cleaning pass, was
added to remove blocks that were discovered during evolution but
that were not useful for the partition.

5. EXPERIMENTAL RESULTS
To show the efficiency of our partitioning method we tested it

on two benchmark programs and several randomly-generated ones.

The size of the applications tested lies between 60 lines for the
DCT program, which is an integer direct cosine transform, and 300
lines of code for the FACT program, which factorizes large integer
in prime numbers. The last kind of programs tested are random
generated programs with different genome sizes. The quality of
our results can be quantified by means of the estimated speedup
and hardware increase. The speedup is computed by comparing
the software-only solution to the final partition and the hardware
increase represents the number of slices in the VIRTEX-II 3000
that have to be added to the software-only solution to obtain the
final partition.

Figure 10: Best individual trace along with the explored fitness
landscape

Fig. 9 depicts the evolution, using 40 iterations per level, of 30
individuals for the FACT program. A maximum hardware increase
of 20% has been specified. We can see that the exploration space
is well covered during evolution. Fig. 10 shows the coverage of the
fitness landscape during evolution along with the best individual
trace for the same program.

Figure 11: Evolution results on various programs (mean value
of 500 runs).

Figure 11 sums up the experiments that have been conducted to
test our algorithm. Each figure in the table represents the mean of
500 runs. It is particularly interesting to note that all the results
were obtained in the order of a few seconds and not minutes or
hours as it is usually the case when GAs are involved and that the
algorithm converged to very efficient solutions during that time.

Unfortunately, even if the domain is the source of a rich litera-
ture, a direct comparison of our approach to others seems very dif-
ficult. Indeed, the large differences that exist in the various design
environments and the lack of common benchmarking techniques
(which can be explained by the different inputs of HW/SW parti-
tioners that may exist) have already been identified in [13] to be a
major difficulty against direct comparisons.

774

6. CONCLUSIONS AND FUTURE WORK
In this article we described an implementation of a new parti-

tioning method using an hybrid GA that is able to solve relatively
large and constrained problems in a very limited amount of time.
However, albeit our method is tailored for a specific kind of pro-
cessor architecture, it remains general and could be used for almost
every embedded system architecture with only minor changes.

This work was done in the context of the development of an au-
tomatic software suite for bio-inspired systems generation in which
Move processors would be used as ontogenetic processors that could
be assembled from different buildings blocks. In this paper, we pre-
sented a method to automatically generate such blocks (i.e. FUs).

The usage of a dynamically-weighted fitness function introduced
some flexibility in the GA and permitted to closely meet the con-
straints whilst maintaining an interesting performance. By using
several optimization passes, we reduced the search space and made
it manageable by a GA. Moreover, the granularity of the partition-
ing is determined dynamically rather than fixed before execution
thanks to hierarchical clustering. The different levels determined
by this technique constitute thus problems of growing complexity
that can be handled more easily by the algorithm.

The results presented here, as well as those of others groups, who
have shown that HW/SW partitioning can be successfully used for
FPGA soft-cores [14], encourage us to pursue our research in or-
der to address the unresolved issues of our system: for example,
although the language in which the problem has to be specified
remains simple, we are currently working on an automatic con-
verter for C which would give us the opportunity to directly test
our method on well-known benchmarking suites.

Future work within the project calls for two main axes of re-
search. On one hand it would be interesting to introduce energy as
a parameter for the fitness function in order to optimize the power-
consumption of the desired embedded circuit. On the other hand,
we are also exploring the possibility of automatically generating
the HDL code corresponding to the extracted hardware blocks, a
tool that would allow us to verify our approach on a larger set of
problems and also on real hardware.

7. REFERENCES
[1] M. Arnold and H. Corporaal. Designing domain-specific

processors. In Proceedings of the 9th International Workshop
on Hardware/Software Codesign, pages 61–66, April 2001.

[2] V. Catania, M. Malgeri, and M. Russo. Applying fuzzy logic
to codesign partitioning. IEEE Micro, 17(3):62–70, 1997.

[3] H. Corporaal. Microprocessor Architectures : from VLIW to
TTA. Wiley and Sons, 1997.

[4] R. P. Dick and N. K. Jha. MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of distributed
embedded systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(10):920–935,
October 1998.

[5] P. Eles, K. Kuchcinski, Z. Peng, and A. Doboli. System level
hardware/software partioning based on simulated annealing
and tabu search. Design Automation for Embedded Systems,
2:5–32, 1997.

[6] R. Ernst, J. Henkel, and T. Benner. Hardware-software
cosynthesis for microcontrollers. In IEEE Design & Test of
Computers, pages 64–75, December 1993.

[7] R. Gupta and G. D. Micheli. System-level synthesis using
re-programmable components. In Proc. European Design
Automation Conference, pages 2–7, August 1992.

[8] J. Harkin, T. M. McGinnity, and L. Maguire. Genetic
algorithm driven hardware-software partitioning for
dynamically reconfigurable embedded systems.
Microprocessors and Microsystems, 25(5):263–274, 2001.

[9] J. Henkel and R. Ernst. High-level estimation techniques for
usage in hardware/software co-design. In ASP-DAC, pages
353–360, 1998.

[10] J. Henkel and R. Ernst. An approach to automated
hardware/software partitioning using a flexible granularity
that is driven by high-level estimation techniques. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 9(2):273–289, April 2001.

[11] J. Hoogerbrugge and H. Corporaal. Transport-triggering vs.
operation-triggering. In Proceedings 5th International
Conference Compiler Construction, pages 435–449, 1994.

[12] J. Hou and W. Wolf. Process partitioning for distributed
embedded systems. In CODES ’96: Proceedings of the 4th
International Workshop on Hardware/Software Co-Design,
page 70. IEEE Computer Society, 1996.

[13] M. López-Vallejo and J. C. López. On the hardware-software
partitioning problem: System modeling and partitioning
techniques. ACM Transactions on Design Automation of
Electronic Systems, 8(3), July 2003.

[14] R. Lysecky and F. Vahid. A study of the speedups and
competitiveness of FPGA soft processor cores using
dynamic hardware/software partitioning. In DATE ’05:
Proceedings of the conference on Design, Automation and
Test in Europe, pages 18–23. IEEE Computer Society, 2005.

[15] H. Oudghiri and B. Kaminska. Global weighted scheduling
and allocation algorithms. In European Conference on
Design Automation, pages 491–495, March 1992.

[16] J.-M. Renders and H. Bersini. Hybridizing genetic
algorithms with hill-climbing methods forglobal
optimization: two possible ways. In Proc. of the First IEEE
Conference on Evolutionary Computation, volume 1, pages
312–317, June 1994.

[17] V. Srinivasan, S. Radhakrishnan, and R. Vemuri.
Hardware/software partitioning with integrated hardware
design space exploration. In DATE ’98: Proceedings of the
conference on Design, automation and test in Europe, pages
28–35. IEEE Computer Society, 1998.

[18] G. Tempesti, P.-A. Mudry, and R. Hoffmann. A Move
processor for bio-inspired systems. In NASA/DoD
Conference on Evolvable Hardware (EH05), pages 262–271.
IEEE Computer Society Press, June 2005.

[19] F. Vahid and D. Gajski. Incremental hardware estimation
during hardware/software functional partitioning. IEEE
Transactions on VLSI Systems, 3(3):459–464, 1995.

[20] F. Vahid, J. Gong, and D. Gajski. A binary-constraint search
algorithm for minimizing hardware during
hardware/software partitioning. In Proc. EURODAC, pages
214–219, 1994.

[21] T. Wiangtong. Hardware/Software Partitioning And
Scheduling For Reconfigurable Systems. PhD thesis, Imperial
College London, February 2004.

[22] T. Wiangtong, P. Y. Cheung, and W. Luk. Comparing three
heuristic search methods for functional partitioning in
hardware-software codesign. Design Automation for
Embedded Systems, 6(4):425–449, July 2002.

775

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

