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Abstract 
Partitioning a system ‘3 functionality among interact- 

ing hardware and software components is an important 
part of system design. We introduce a new partitioning 
approach that caters to the main objective of the hard- 
ware/software partitioningproblem, i.e., minimizing hard- 
ware ,for given performance constraints. We demonstrate 
results superior to those of previously published algorithms 
intendedjor hardware/software partitioning. The approach 
may be genera&able to problems in which one metric must 
be minimized while other metrics must merely satisfy con- 
straints. 

1 Introduction 
Co.mbined hardware/software implementations are 

common in embedded systems. Software running on an 
existing processor is less expensive, more easily modi- 
fiable, and more quickly designable than an equivalent 
application-specific hardware implementation. However, 
hardware may provide better performance. A system de- 
signer’s goal is to implement a system using a minimal 
amount of application-specific hardware, if any at all, to 
satisfy required performance. In other words, the designer 
attempts lo implement as much functionality as possible 
in software. 

Deficiencies of the much practiced ad-hoc approach to 
partitioning have led to research into more formal, algo- 
rithmic approaches. In the ad-hoc approach, a designer 
starts with an informal functional description of the de- 
sired system, such as an English description. Based on 
previous experience and mental estimations, the designer 
partitions the functionality among hardware and software 
components, and the components are then designed and 
integrated. This approach has two key limitations. First, 
due to limited time, the designer can only consider a small 
numbe.r of possible partitionings, so many good solutions 
will never be considered. Second, the effects that partition- 
ing has on performance are far too complex for a designer 
to accurately estimate mentally. As a result of these limi- 
tations, designers often use more hardware than necessary 
to ensure performance constraints are met. 
-- 
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In formal approaches, one starts with a functional de- 
scription of the system in a machine-readable language, 
such as VHDL. After verifying, usually through simula- 
tion, that the description is correct, the functionality is 
decomposed into functional portions of some granularity. 
These portions, along with additional information such as 
data shared between portions, make up an internal model 
of the system. Each portion is mapped to either hardware 
or software by partitioning algorithms that search large 
numbers of solutions. Such algorithms are guided by au- 
tomated estimators that evaluate cost junctions for each 
partitioning. The output is a set of functional portions to 
be mapped to software and another set to be mapped to 
hardware. Simulation of the designed hardware and com- 
piled software can then be performed to observe the effects 
of partitioning. Figure 1 shows a typical configuration of 
a hardware/software partitioning system. 
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Figure 1: Basics parts of a hw/sw partitioning system 

The partitioning algorithm is a crucial part of the for- 
mal approach because it is the algorithm that actually min- 
imizes the expensive hardware. However, current research 
into algorithms for hardware/software partitioning is at an 
early stage. In [l], the essential criteria to consider dur- 
ing partitioning are described, but no particular algorithm 
is given. In [2], certain partitioning issues are also de- 
scribed but no algorithm is given. In [3], an approach based 
on a multi-stage clustering algorithm is described, where 
the closeness metrics include hardware sharing and con- 
currency, and where particular clusterings are evaluated 
based on factors including an area/performance cost func- 
tion. In [4], an algorithm is described which starts with 
most functionality in hardware, and which then moves por- 
tions into software as long as such a move improves the de- 
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sign. In [5], an approach is described which starts with all 
functionality in software, and which then moves portions 
into hardware using an iterative-improvement algorithm 
such as simulated annealing. The authors hypothesize that 
starting with an all-software partitioning will result in less 
final hardware than starting with all-hardware partition- 
ing (our results support this hypothesis). In [6], simulated 
annealing is also used. The focus is on placing highly uti- 
lized functional portions in hardware. However, there is 
no direct performance measurement. The common short- 
coming of all previous approaches is the lack of advanced 
methods to minimize hardware. 

We propose a new partitioning approach that specifi- 
cally addresses the need to minimize hardware while meet- 
ing performance constraints. The novelty of the approach 
is in how it frees a partitioning algorithm, such as simu- 
lated annealing, from simultaneously trying to satisfy per- 
formance constraints and to minimize hardware, since try- 
ing to solve both problems simultaneously yields a poor 
solution to both problems. Instead, in our approach, we 
use a relaxed cost function that enables the algorithm to 
focus on satisfying performance, and we use an efficiently- 
controlled outer loop (based on binary-search) to han- 
dle the hardware minimization. As such, our approach 
can be considered as a meta-algorithm that combines the 
binary-search algorithm with any given partitioning algo- 
rithm. The approach results in substantially less hard- 
ware, while using only a small constant factor of additional 
computation and still satisfying performance constraints 
(whereas starting with an all-software partition and apply- 
ing iterative-improvement algorithms often fails to satisfy 
performance). Such a reduction can significantly decrease 
implementation costs. Moving one of the subproblems to 
an outer loop may in fact be a general solution to other 
problems in which one metric must be minimized while 
others must merely satisfy constraints. 

The paper is organized as follows. Section 2 gives a 
definition of the hardware/software partitioning problem. 
Section 3 describes previous hardware/software partition- 
ing algorithms, an extension we have made to one previ- 
ous algorithm to reduce hardware, and our new hardware- 
minimizing algorithm based on constraint-search. Sec- 
tion 4 summarizes our experimental results on several ex- 
amples. 

2 Problem Definition 
While the partitioning subproblem interacts with other 

subproblems in hardware/software codesign, it is distinct, 
i.e., it is orthogonal to the choice of specification language, 
the level of granularity of functional decomposition, and 
the specific estimation models employed. 

We are given a set of functional objects 0 = 
{01,02,..., on} which compose the functionality of the sys- 
tem under design. The functions may be at any of various 
levels of granularity, such as tasks (e.g., processes, pro- 
cedures or code groupings) or arithmetic operations. We 
are also given a set of performance constraints Cons = 
{Cl,C2 ,..., Cm), where Cj = {G, timecon}, G C 0, and 

limecon E Posihve. hvnecon is a constraint on the maxi- 
mum execution-time of the all functions in group G. It is 
simple to extend the problem to alIow other performance 
constraints such as those on bitrates or inter-operation de- 
lays, but we have not included such constraints in order to 
simplify the notation. 

A hardware/software partition is defined as two 
sets H and S, where H C 0, S C 0, H US = 0, 
HnS=O.Th is e ni ion does not prevent further par- dfi t 
tition of hardware or software. Hardware can be parti- 
tioned into several chips while software can be executed 
on more than one processor. The hardware size of H, 
or Hsite(H) is defined as the size (e.g., transistors) of the 
hardware needed to implement the functions in H. The 
performance of G, or Performance(G), is defined as the 
total execution time for the group of functions in G for a 
given partition H,S. A performance satisfying parti- 
tion is one for which Performance(Cj.G) 5 Cj.timecon 
for all j = 1 . . . m. 

Deflnition 1: Given 0 and Cons, the Hard- 
ware/Software Partitioning Problem is to find a per- 
formance satisfying partition H and S such that Hsize(H) 
is minimal. In other words, the problem is to map all the 
functions to either hardware or software in such a way 
that we find the minimal hardware for which all perfor- 
mance constraints can still be met. Note that the hard- 
ware/software partitioning problem, like other partitioning 
problems, is NP-complete. 

The all-hardware size of 0 is defined as the size of 
an all-hardware partition, or in other words as Hsize(0). 
Note that if an all-hardware partition does not satisfy per- 
formance constraints, no solution exists. 

To compare any two partitions, a cost function is re- 
quired. A cost function is a function Cod(H, S, Cons, I) 
which returns a natural number that summarizes the 
overall goodness of a given partition, the smaller the 
better. I contains any additional information that is 
not contained in II, S or Cons. We define an it- 
erative improvement partitioning algorithm as a 
procedure PadAlg( H, S, Cons, I, Cost()) which returns 
a partition H’, S’ such that Cosl(H’, S’, Cons,I) 5 
Cost( H, S, Cons, I). Examples of such algorithms include 
group migration [7] and simulated annealing [8]. 

Since it is not feasible to implement the hardware and 
software components in order to determine a cost for each 
possible partition generated by an algorithm, we assume 
that fast estimators are available [9, 10, 111. 

3 Part it ioning solution 
3.1 Basic algorithms 

One simple and fast algorithm starts with an initial 
partition, and moves objects as long as improvement OC- 

curs. The algorithm presented in [4], due to Gupta and 
DeMicheli, and abbreviated as GD, can be viewed as an 
extension of this algorithm which ensures performance con- 
straints are met. The algorithm starts by creating an all- 
hardware partition, thus guaranteeing that a performance 
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satisfying partition is found if it exists (actually, certain 
functions which are considered unconstrainable are ini- 
tially placed in software). To move a function requires not 
only cost improvement but also that all performance con- 
straints still be satisfied (actually they require that max- 
imum interfacing constraints between hardware and soft- 
ware be satisfied). Once a function is moved, the algorithm 
tries to move closely related functions before trying others. 

Greedy algorithms, such as the one described above, 
suffer from the limitation that they are easily trapped in 
a local minimum. As a simple example, consider an ini- 
tial partition that is performance satisfying, in which two 
heavily communicating functions or and 02 are initially in 
hardware. Suppose that moving either 01 or 02 to soft- 
ware results in performance violations, but moving both 
01 and 02 results in a performance satisfying partition. 
Neither of the above algorithms can find the latter solu- 
tion because doing so requires accepting an intermediate, 
seemmgly negative move of a single function. 

To overcome the limitation of greedy algorithms, oth- 
ers have proposed using an existing hill-climbing algorithm 
such as simulated annealing. Such an algorithm accepts 
some number of negative moves in a manner that over- 
comes many local minimums. One simply creates an initial 
partit,ion and applies the algorithm. 

In [5], such an approach is described by Ernst and 
Henkel that uses an all-software solution for the initial par- 
tition. A hill-climbing partitioning algorithm is then used 
to extract functions from software to hardware in order 
to meet performance. The authors reason that such ex- 
traction should result in less hardware than the approach 
where functions are extracted in the other direction, i.e., 
from bardware to software. 

Cost function 

We now consider devising a cost function to be used 
by the hill-climbing partitioning algorithm. The difficultly 
lies in trying to balance the performance satisfiability and 
hardware minimization goals. The GD approach does not 
encounter this problem since performance satisfiabiiity is 
not part of the cost function. The cost function is only 
used to evaluate partitions that already satisfy the perfor- 
mance constraints. The algorithm simply rejects all par- 
titions that are not performance satisfying. We saw that 
this approach will become trapped in a local minimum. 
The Ernst/Henkel approach does not encounter this prob- 
lem since hardware size is not part of the cost function; 
instead, it is fixed beforehand, by allocating resources be- 
fore partitioning. This approach requires the designer to 
manually try numerous hardware sizes, reapplying parti- 
tioning for each, to try to find the smallest hardware size 
that yields a performance satisfying partition. 

We propose a third solution. We use a cost function 
with two terms, one indicating the sum of all performance 
violations, the other the hardware size. The performance 
term is weighed very heavily to ensure that a performance 
satisfying solution is found, so minimizing hardware is a 
secondary consideration. The cost function is: 

Cost( H, S, Cons) = kperf Violation(C.,) 
J”1 

+ k OPeD x Hsize(H) 

where Violation(Cj) = Performance(CJ.G)-Cj.timecon 
if the difference is greater than 0, else Violadion(C,) = 0. 
Also, kperf >> k,,,,, but kperf should not be infinity, 
since then the algorithm could not distinguish a partition 
which almost meets constraints from one which greatly 
violates constraints. 

We refer to this solution as the PWHC (performance- 
weighted hi-climbing) algorithm. We shall see that it 
gives excellent results as compared to the GD algorithm, 
but there is still room for improvement. In particular, 
when starting with an all-software partition, hill-climbing 
algorithms often fail to find a performance-satisfying solu- 
tion. 

3.2 A new constraint-search approach 
While incorporating performance and hardware size 

considerations in the same cost function, as in PWHC, 
tends to gives much better results than previous ap 
proaches, we have determined a superior approach for min- 
imizing hardware. Our approach involves dec0uplin.g to 
a degree the problem of satisfying performance from the 
problem of minimizing hardware. 

3.2.1 Foundation 

The first step is to realize that the difficulty experienced 
in PWHC is that the two metrics in the cost function, 
performance and hardware size, directly compete with each 
other. In other words, decreasing performance violations 
usually increases hardware size, while decreasing hardware 
size usually increases performance violations. An iterative- 
improvement algorithm has a hard time making significant 
progress towards minimizing one of the metrics since any 
reduction in one metric’s value yields an increase in the 
other metric’s value, resulting in very large “hills” that 
must be climbed. To solve this problem, we can relax the 
cost function goal. Rather than minimizing size, we just 
wish to find any size below a given constraint C,,,,. 

Cost ( H, S, Cons, Csize ) 
m 

= k P-f x c 
Violation(C,) 

j=1 

+ k area x Violation(Hsize( H), Csize) 

It is no longer required that kperf >> kare,,. We set 
k Per! - - k,,,, = 1. The effect of relaxing the cost function 
goal is that once the hardware size drops below the con- 
straint, decreasing performance violations does not neces- 
sarily yield a hardware-size violation; hence the iterative- 
improvement algorithm has more flexibility to work to- 
wards eliminating performance violations. 
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The hardware minimization problem can now be stated 
distinct from the partitioning problem. 

Deflnition 2: Given 0, Cons, PartAlg() and 
Cosl(), the Minimal Hardware-Constraint Prob- 
lem is to determine the smallest Csire such that 
Cost(PartAlg(H, S, COTIS, Csize, Cost()),Cons, Csize) = 
0. In other words, we must choose the smallest size con- 
straint for which a performance satisfying solution can be 
found by the partitioning algorithm. 

Theorem 1: Let PartAlg() be such that it al- 
ways finds a zero-cost solution if one exists. Then 
Cost(PartAlg(H, S, Cons, Csize, Cost()), Cons, Csize) = 
0 implies that Cost( PartAlg( H, S, Cons, Csize + 
1, Cost()), COTZS, Csize + 1) = 0. 

Proof: we can create a (hypothetical) algorithm which 
subtracts 1 from its hardware-size constraint if a zero-cost 
solution is not found. Given Csize + 1 as the constraint, 
then if a zero-cost is not found, the algorithm will try Csize 
as the constraint. Thus the algorithm can always find a 
zero-cost solution for Csile + 1 if one exists for Csile. 

The above theorem states that if a zerocost solution 
is found for a given Csize, then zerocost solutions will 
be found for all larger values of Csire also. From this 
theorem we see that the sequence of cost numbers ob- 
tained for C *,ze = 0, 1, . ..) AllHardwareSiae consists of 
z non-zero numbers followed by Ceil= - z zero’s, where 
z E {O..A~~HardwareSize}. Let CostSequence equal this 
sequence of cost numbers. Figure 2 depicts an example 
of a CostSequence graphically. (It is important to note 
that CostSequence is conceptual; it describes the solu- 
tion space, but we do not actually need to generate this 
sequence to find a solution). We can now restate the min- 
imal hardware-constraint problem as a search problem: 

mr zwo 

CUSf 500 200 300 350 50 b 0 . . 0 0 

Size H++i+++FH 
conatraht 0 1 2 3 4 5 6 AllHardwareSlze 

Figure 2: An example cost sequence 

Deflnition 3: Given H, S, Cons, PattAlg() and 
Cost0 the Minimal Hardware-Constraint Search 
Problem is to find the first zero in CostSequence. 

Given this definition, we see that the problem can be 
easily mapped to the well-known problem of Sorted-array 
search, i.e., of finding the first occurrence of a key in an 
ordered array of items. The main difference between the 
two problems is that whereas in sorted-array search the 
items exist in the array beforehand, in our constraint- 
search problem an item is added (i.e. partitioning applied 
and a cost determined) only if the array location is visited 
during search. In either case, we wish to visit as few ar- 
ray items as possible, so the difference does not affect the 
solution. A second difference is that the first z items in 
CostSequence are not necessarily in increasing or decreas- 
ing order. Since we are looking for a zero cost solution, 

we don’t care what those non-zero values are, so we can 
convert CostSequence to an ordered sequence by mapping 
each non-zero cost to 1. 

The constraint corresponding to the first zero cost rep- 
resents the minimal hardware, or optimal solution to the 
partitioning problem. Due to the NP-completeness of par- 
titioning, it should come as no surprise that we can not 
actually guarantee an optimal solution. Note that we as- 
sumed in the above theorem that PatlAlg() finds a zero- 
cost solution if one exists for the given size constraint. 
Since partitioning is NP-complete, such an algorithm is 
impractical. Thus PartAlg() may not find a zero-cost so- 
lution although one may exist for a given size constraint. 
The result is that the first zero in CostSequence may be 
for a constraint which is larger than the optimal, or that 
non-zero costs may appear for constraints larger than that 
yielding the first zero cost, meaning the sequence of zeros 
contains spikes. However, the first zero cost should corre- 
spond to a constraint near the optimal if a good algorithm 
is used. In addition, any spikes that occur should also only 
appear near the optimal. Thus the algorithm should yield 
near optimal results. 

It is well-known that binary-search is a good solution 
to the sorted-array search problem, since its worst case 
behavior is log(N) for an array of N items. We.therefore 
incorporate binary-search into our algorithm. 

3.2.2 Algorithm 

We now describe our hardware-minimizing partitioning al- 
gorithm based on binary-search of the sequence of costs for 
the range of possible hardware constraints, which we refer 
to as the BCS (binary constraint-search) algorithm. The 
algorithm uses variables low and high which indicate the 
current window of possible constraints in which a zero-cost 
constraint lies, and variable mid which represents the mid- 
dle of that window. Variables H,,,, and S,,,, store the 
zero-cost partition which has the smallest hardware con- 
straint so far encountered. 

Algorithm 3.1 BCS hw/sw partitioning 

low = 0, high = AllHardwareSize 
while low < high loop 

,,,id = low+high+l 

H’, S’ =PariAlg(H, S, Cons, mid,Cost()) 
if Cost(H’, S’, Cons, mid) = 0 then 

high = mid - 1 
H zet.0, S,,,, = H’,S’ 

else 
low = mid 

end if 
end loop 

return Hz,,, , Lo 

The algorithm performs a binary search through the 
range of possible constraints, applying partitioning and 
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then the cost function as each constraint is “visited”. The 
algorithm looks very much like a standard binary-search 
algorithm with two modifications. First, mid is used as a 
hardware constraint for partitioning whose result is then 
used to determine a cost, in contrast to using mid as an 
index to an array item. Second, the cost is compared to 0, 
in contrast to an array item being compared to a key. 

3.2.;3 Reducing runtime in practice 

After experimentation, we developed a simple modification 
of t.he constraint-search algorithm to reduce its runtime in 
pract.ice. Let SiZebest be the smallest zerocost hardware 
const.raint. If a Csize constraint much larger than SiZebest 
is provided to PartAIg(), the algorithm usually finds a so- 
lution very quickly. The functions causing a performance 
violation are simply moved to hardware. If a Csile con- 
straint much smaller than SiZebest is provided, the algo- 
rithm also stops fairly quickly, since it is unable to find 
a sequence of moves that improves the cost. However, if 
Csize is slightly smaller or larger than SiZebest, the algo- 
rithm usually makes a large number of moves, gradually 
inching its way towards a cost of zero. This situation is 
very qdifferent from traditional binary-search where a com- 
parison of the key with an item takes the same time for 
any item. Near the end of binary-search the window of 
possible constraint values is very small, with SiZebesr some- 
where inside this window. Much of the constraint-search 
algorithm’s runtime is spent reducing the window size by 
minute amounts and reapplying lengthy partitioning. 

In practice, we need not find the smallest hardware 
size to such a degree of precision. We thus terminate the 
binary-search when the window size (i.e., high - low) is 
less than a certain percentage of AIIHardurareSize. This 
percentage is called a precision factor. We have found 
that a precision factor of 1% achieves a speedup of roughly 
2.5; we allow the user to select any factor. 

X2.4: Complexity 

The worst-case runtime complexity of the constraint- 
search algorithm equals the complexity of the chosen parti- 
tioning algorithm PartAlg() multiplied by the complexity 
of our binary constraint-search. While the complexity of 
the binary search of a sequence with AllHardwareSize 
items is logz(AllHardwareSize), the precision factor re- 
duces this to a constant. 

Theorem 2: The complexity of the binary search of 
an N element CostSequence with a precision factor a is 
loch($). 

Proof: We start with a window size of N, and repeat- 
edly divide the window size by 2 until the window size 
equals. a x N. Let w be the number of windows generated; 
w will thus give us the complexity. An equivalent value 
for w is obtained by starting with a window size of a x N, 
and multiplying the size by 2 until the size is N. Hence we 
obtain the following equation: (a x N) x 2’” = N. Solving 
for w yields w = logs( 5) = logz( a). The complexity is 
therefore logz(i). 

We see that binary constraint-search partitioning with a 
precision factor has the same theoretical complexity as the 
partitioning algorithm PartAlg(). In practice, the binary 
constraint-search contributes a small constant factor. For 
example, a precision factor of 5% results in a constant 
factor of logs(20) = 4.3. 

4 Experiments 
We briefly describe the environment used to compare 

the various algorithms on real examples. It is important 
to note that most environment issues are orthogonal t.o the 
issue of algorithm design. Our algorithms should perform 
well in any of the environments discussed in other work 
such as [II 2, 3,4,5]. It should also be noted that any par- 
titioning algorithm can be used within the BCS algorithm, 
not just simulated annealing. 

We take a VHDL behavioral description as input. The 
description is decomposed to the granularity of tasks, i.e., 
processes, procedures, and optionally to statement blocks 
such as loops. Large data items (variables) are also treated 
as functions. Estimators of hardware size and behavior 
execution-time for both hardware and software are avail- 
able [9, lo]. These estimators are especially designed to be 
used in conjunction with partitioning. In particular, very 
fast and accurate estimations are made available through 
special techniques to incrementally modify an estimate 
when a function is moved, rather than reestimating en- 
tirely for the new partition. The briefness of our discuission 
on estimation does not imply that it is trivial or simple, 
but instead that it is a different issue not discussed in this 
paper. We also note here that ILP solutions are inadeq,uate 
for use here because the metrics involved are non-linear, 
since they are obtained by using sophisticated estimators 
based on design models, rather than by using linear but 
grossly inaccurate metrics. 

We implemented three partitioning algorithms: GD, 
PWHC, and BCS. The PartAIg() used in PWHC and BCS 
is simulated annealing. From now on, we also refer the 
PWHC algorithm as SA (Simulated Annealing). The pre- 
cision factor used in BCS is 5%. We applied each algori.thm 
to several examples: a real-time medical system (Volume) 
for measuring volume, a beam former system (Beam), a 
fuzzy logic control system (Fuzzy), and a microwave trans- 
mitter system (Microwave). For each example, a varie,ty of 
performance constraints were input. Some examples have 
performance constraints on one group of tasks in the sys- 
tem. Others have performance constraints on two groups 
of tasks in the system. We tested each example using ;s set 
of performance constraints that reside between the time re- 
quired for an all-hardware partition and the time requ.ired 
for an all-software partition. The initial partition used in 
each trial by SA and BCS is an all-software partition. We 
also ran SA and BCS starting with an all-hardware par- 
tition, but found that the results were inferior to those 
starting with an all-software partition. 

Figure 3 summarizes the results. The Average run lime 
is the measured CPU time running on a Sparc2. The Au- 
erage hardware decrease percentage is the percentage by 
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Figure 3: Partitioning results on industry examples 

which each algorithm reduces the hardware, relative to the 
size of an all-hardware implementation. The Best cases is 
the number of times the given algorithm results in a hard- 
ware size smaller than those of both other algorithms. The 
Worst cases is the number of times the algorithm results 
in a hardware size that is larger than those of both other 
algorithms. No solution cases is the number of times the 
algorithm fails to find a performance-satisfying partition. 

The results demonstrate the superiority of the BCS al- 
gorithm in finding a performance-satisfying partition with 
minimal hardware. BCS always finds a performance- 
satisfying partition (in fact, it is guaranteed to do so), 
whereas SA failed in 5 cases, which is 13.2% of all cases. 
While GD also always finds a performance-satisfying par- 
tition, BCS results in a 9.5% savings in hardware, cor- 
responding to an average savings of approximately 12083 
gates [12]. An additional positive note that can be seen 
from the experiments is that the increase in computation 
time of BCS over simulated annealing is only 4.1, slightly 
better than the theoretical expectation of 4.3. 

To further evaluate the BCS algorithm, we developed a 
general formulation of the hardware/software partitioning 
problem. This formulation enables us to generate problems 
that imitate real examples, without spending the many 
months required to develop a real example. In addition, 
the formulation enables a comparison of algorithms with- 
out requiring use of sophisticated software and hardware 
estimators, which makes algorithm comparison possible for 
others who do not have such estimators. We generated 125 
general hardware-software partitioning problems, and then 
applied BCS with a 5% precision factor, SA and GD. The 
BCS algorithm again finds performance-satisfying parti- 
tions with less hardware. SA failed to find a performance- 
satisfying partition in 15 cases, which is 12.5% of all cases. 
While GD also always found a performance-satisfying par- 
tition, BCS resulted in nearly a 10% savings in hardware. 
Figure 4 summarizes the comparison of BCS to the other 
algorithms. Details of the formulation, the psuedorandom 
hardware/software problem generation algorithm, and the 
partitioning results are provided in [13]. 

Hardware Hardware Failure rate 
Time increase 

(SA) “~% 8flvdR dKG- 

4.1x 2.7% 9.5% 12.5% 

Figure 4: BCS compared to other algorithms 

5 Conclusion 
The BCS algorithm excels over previous hard- 

ware/software partitioning algorithms in its ability to min- 
imize hardware while satisfying performance constraints. 
The computation time required by the algorithm is well 
within reason, especially when one considers the great ben- 
efits obtained from the reduction in hardware achieved by 
the algorithm, including reduced system cost, faster de- 
sign time, and more easily modifiable final designs. The 
BCS approach is essentially a meta-algorithm that removes 
from a cost function one metric that must be minimized, 
and thus the approach may be applicable to a wide range 
of problems involving non-linear, competing metrics. 
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