

Possible Reactions of "Fisherians" to Our Twill treat them next. I'll return to Bayesianism and Likelihoodism laterA Fisherian would tend to interpret a +-result in our top following two ways (see [29, chapter 3] for detailed crit is significance Test: If we take $H_0 = -H$ to be the null by Fisherian might respond to a + by saying that we have on is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or and the vidence against the null hypo is significant at the 2% level, or with a p-value of 0.02. is significant at the 2% level, or and the vidence against the listory of statutes is a reasons to reject null hypotheses. Is there "probabilistic madus tallens?" (MT) $\frac{H = E}{r_c = -H}$ (PMT) $\frac{Pr(E H > 1}{r_c(-H -E) \approx 1}$ is the distingth or the phylosophy of Statutes as reasons to reject null hypotheses. Is there "probabilistic madus tallens?" (MT) $\frac{H = E}{r_c = -H}$ (PMT) \frac	en Fitelson	Remarks on the Philosophy of Statistics	4 Branden Fitelson	Remarks on the Philosophy of Statistics
will treat them next. I'll return to Bayesianism and Likelihoodism later will treat them next. I'll return to Bayesianism and Likelihoodism later will treat them next. I'll return to Bayesianism and Likelihoodism later Sufficience Text: If we take $H_0 = -H$ to be the null by Fisherian might respond to $a + by$ saying that we have to is significant at the 2% level, or with $a - y$ -value of 0.02. (*) "Either a rare event $ P_{1M}(+ H_0) = 0.02]$ has occurr Many statisticians (including Fisher himself) have inter measures of evidential strength. According to Fisherian p-value, the stronger the evidence against the null hypo Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c, and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c, and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c, and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c, and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c, and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c. and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of a coin c are $Bin(1, 0)$ (viz., i.i.d., I sequence of n tosses of c. and $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of c coin $H_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of c or $M_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of c or $M_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of c or $M_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of c or $M_1; \delta = \frac{1}{2}$. Then, $P_{1M}(E $ 0 Let $M =$ the tosses of c or $M_1; \delta = \frac{1}{2}$			Possible Rea	nctions of "Fisherians" to Our Toy Example I
will treat them next. I'll return to Bayesianism and Likelihoodism later will treat them next. I'll return to Bayesianism and Likelihoodism later will treat them next. I'll return to Bayesianism and Likelihoodism later (*) " <i>Either a</i> rare event [$P_{13}(+ H_0 = 0.02]$ has occurr Many statisticians (including Fisher himself) have inter measures of evidential strength. According to Fisherian p-value, the stronger the evidence against the null hypo Let $M =$ the tosses of a coin care Bainst (H_0) (e_1 , i.i.d., sequence of n tosses of c, and H_0 : $\theta = \frac{1}{2}$. Then, $P_{13}(E]$ \therefore For large n , any outcome E is "strong evidence against sting out of (*), and the evidential interpretation of p -values as reasons to reject null hypotheses. Is there "probabilistic modus tollens?" ($MT_1 \frac{H \Rightarrow E}{\therefore -E \Rightarrow -H}$ ($PMT_1 \frac{P(E H) \approx 1}{\therefore P(1-H -E) \approx 1}$ • While (MT) is valid, its inductive analogue (PMT) is not. One must assume $Pr(E H) = 1$ to ensure $P(-H_1 -E) \approx 1$ (prace [5, §4.3] $6(20, §1.7)$). • This illegitimate form of inference has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).			A Fisherian we following two sets of the set of th	uld tend to interpret a +-result in our toy example in one of vays (see [29, chapter 3] for detailed critical discussion):
will treat them next. I'll return to Bayesianism and Likelihoodism later (*) " <i>Either</i> a rare event [$Pr_{M}(+ H_{0} = 0.02$] has occurr • Many statisticians (including Fisher himself) have inter- measures of evidential strength. According to Fisherian p-value, the stronger the evidence against the null hypo • Let M = the tosses of a coin c are $Bin(1, 0, (viz, i.i.d., I)$ sequence of n tosses of c , and H_{2} : $\theta = \frac{1}{2}$. Then, $Pr_{M}(z)$ • L for large n , any outcome E is "strong evidence against sting out of (*), and the evidential interpretation of p -va- sting out of (*), and the evidential interpretation of p -va- ten Fluetson Remarks on the Philosophy of Statistics • Possible Reactions of "Fisherians" to Our Toy Example II • Rejection Trial: Sometimes, Fisherians take observations with small p -values as reasons to $reject$ null hypotheses. Is there "probabilistic modus tollens?" $(MT) \frac{H \Rightarrow E}{\therefore \neg E \Rightarrow \neg H}$ (PMT) $\frac{Pr(E H) \approx 1}{\therefore Pr(\neg H \neg E) \approx 1}$ • While (MT) is valid, its inductive analogue (PMT) is not. One must assume $Pr(E H) \equiv 1$ to ensure $Pr(\neg H \neg E) \approx 1$ ($pace [5, §4.3] \in [20, §1.7]$). • This illegitimate form of inference has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).			1. Significance Te Fisherian migh is significant at	st: If we take $H_0 = \neg H$ to be the null hypothesis, then a respond to a + by saying that we have observed a result w the 2% level, or with a <i>p</i> -value of 0.02. Fisher [10, p. 39] s
• Many statisticians (including Fisher himself) have intermeasures of evidential strength. According to Fisherian p -value, the stronger the evidence against the null hypotheses of a coin c are $Bin(1, \theta)$ (vz , $i.d., I sequence of n tosses of c, and H_0: \theta = \frac{1}{2}. Then, P_{M}(E)• SISU Philosophy Presented at LINUCASC (8,07/02)an Flotion Remarks on the Philosophy of Statistics (\theta, and the evidential interpretation of p-values, the stronger the evidence against the null hypotheses. Is there "probabilistic modus tollens?"(MTO, \frac{H \Rightarrow E}{:, RE \Rightarrow -H} (PMTO), \frac{Pr(E H) \approx 1}{:, Pr(-H -E) \approx 1}While (MT) is valid, its inductive analogue (PMT) is not. One must assume Pr(E H) = 1 to ensure Pr(-H -E) \approx 1 (pace [5, §4, 3] \in [20, §1, 7]).This illegitimate form of inference has been used several times in the history of statistics (5, §4, 3] \in [20, §1, 7]). More recently, it has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).$	will treat them next	. I'll return to Bayesianism and Likelihoodism later	(*) <i>"Either</i> a ra	re event [$\Pr_{\mathcal{M}}(+ H_0) = 0.02$] has occurred, or H_0 is false."
• Let $M =$ the tosses of a coin c are $Bin(1, \theta)$ (viz, i.i.d., I sequence of n tosses of c , and H_0 : $\theta = \frac{1}{2}$. Then, $Pr_M(E)$ • \therefore For large n , any outcome E is "strong evidence agains sting out of (*), and the evidential interpretation of p -variance P and P are evidented at LLNLCASC en FileIson Remarks on the Philosophy of Statistics θ Possible Reactions of "Fisherians" to Our Toy Example II Rejection Trial: Sometimes, Fisherians take observations with small p -values as reasons to $reject$ null hypotheses. Is there "probabilistic modus tollens?" $(MT) = \frac{H \Rightarrow E}{\therefore \neg E \Rightarrow \neg H}$ (PMT) $\frac{Pr(E H) \approx 1}{\therefore Pr(-H \neg E) \approx 1}$ While (MT) is valid, its inductive analogue (PMT) is not. One must assume $Pr(E H) = 1$ to ensure $Pr(\neg H \neg E) \approx 1$ (pace [5, §4.3] b [20, §1.7]). This illegitimate form of inference has been used several times in the history of statistics ([5, §4.3] b [20, §1.7]). More recently, it has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).			Many statistician measures of ev <i>p</i> -value, the str	ans (including Fisher himself) have interpreted <i>p</i> -values as dential strength. According to Fisherians, the lower the onger the evidence against the null hypothesis [9, p. 80].
SJSU PhilosophyPresented at LLNLCASC0807/02SJSU PhilosophyPresented at LLNLCASC0807/02an FitelsonRemarks on the Philosophy of Statistics6 Possible Reactions of "Fisherians" to Our Toy Example II Reaction of "Neyman-Pearsonians" to Our Toy IRejection Trial: Sometimes, Fisherians take observations with small <i>p</i> -values as reasons to <i>reject</i> null hypotheses. Is there "probabilistic modus tollens?"(MT) (MT) $H \Rightarrow E$ (PMT) (MT) $Pr(E H) \approx 1$ (MT) $H \Rightarrow E$ (PMT) $Tr(E H) = 1$ to ensure $Pr(\neg H \neg E) \approx 1$ While (MT) is valid, its inductive analogue (PMT) is not. One must assume $Pr(E H) = 1$ to ensure $Pr(\neg H \neg E) \approx 1$ (<i>pace</i> [5, §4.3] & [20, §1.7]).This illegitimate form of inference has been used several times in the history of statistics ([5, §4.3] & [20, §1.7]).This illegitimate form of inference has been used several times in the history of statistics to argue against evolution theory ([6], [12], [26], [11], [33]).		• Let \mathcal{M} = the to sequence of <i>n</i> t	sees of a coin <i>c</i> are $Bin(1, \theta)$ (<i>viz.</i> , i.i.d., Bernoulli), $E = a$ posses of <i>c</i> , and H_0 : $\theta = \frac{1}{2}$. Then, $\Pr_{\mathcal{M}}(E \mid H_0) = (\frac{1}{2})^n$, for an	
SJSU Philosophy Presented at LLNL/CASC OB(07/02 den FiteIson Remarks on the Philosophy of Statistics 6 Possible Reactions of "Fisherians" to Our Toy Example II Image: SJSU Philosophy Presented at LLNL/CASC Possible Reactions of "Fisherians" to Our Toy Example II Image: SJSU Philosophy Remarks on the Philosophy of Statist Rejection Trial: Sometimes, Fisherians take observations with small <i>p</i> -values as reasons to <i>reject</i> null hypotheses. Is there "probabilistic <i>modus tollens</i> ?" Image: N=P Reaction: The experiment is designed (<i>viz.</i> , M) for recommending rejection of H_0 if + is observed and accord observed. There are two types of errors we could make $-$ Type I error: rejecting H_0 (& accepting H) on the basis of $-$ Type II error: accepting H_0 (& accepting H) on the basis of $-$ Type II error: accepting H_0 (& accepting H) on the basis of $-$ Type II error is accepting H_0 (& accepting H) on the basis of $-$ Type II error is accepting H_0 (br rejecting H) on the basis of $-$ Type II error is accepting H_0 (br rejecting H) on the basis of $-$ Type II error is accepting H_0 (br rejecting H) on the basis of $-$ Type II error is accepting H_0 (br rejecting H) on the basis of $-$ Type II error is accepting H_0 (br rejecting H) on the basis of $-$ Type II error is accepting H_0 (br a Type II error (size) is $\sigma = And$, the probability of a Type II error (size) is $\sigma = And$, the probability of a Type II error (size) is $\beta = Pri$ • This illegitimate form of inference has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]). • In rejecting H_0 on the basis of + (using M), we are not (strongly) believe H_0 ; nor			∴ For large <i>n</i> , <i>c</i> sting out of (*)	<i>ny</i> outcome <i>E</i> is "strong evidence against H_0 !" This takes and the evidential interpretation of <i>p</i> -values (see [19, p. 82]
den FitelsonRemarks on the Philosophy of Statistics6Possible Reactions of "Fisherians" to Our Toy Example IIIA. Rejection Trial: Sometimes, Fisherians take observations with small <i>p</i> -values as reasons to <i>reject</i> null hypotheses. Is there "probabilistic <i>modus tollens</i> ?"Reaction of "Neyman-Pearsonians" to Our Toy I(MT) $H \Rightarrow E$ $\therefore \neg E \Rightarrow \neg H$ (PMT) $Pr(E H) \approx 1$ $\therefore \Pr(\neg H \neg E) \approx 1$ • While (MT) is valid, its inductive analogue (PMT) is not. One must assume $Pr(E H) = 1$ to ensure $Pr(\neg H \neg E) \approx 1$ (<i>pace</i> [5, §4.3] & [20, §1.7]).• For our \mathcal{M} , the probability of a Type I error (size) is $\alpha =$ And, the probability of a Type II error (power) is $\beta =$ Pr • In rejecting H_0 on the basis of + (using \mathcal{M}), we are not a (strongly) <i>believe</i> H_0 ; nor are we saying that + constitut <i>against</i> H_0 (<i>vs</i> H). Statistics is not in the businesses of β	SJSU Philosophy	Presented at LLNL/CASC 08/07/0	12 SJSU Philosophy	Presented at LLNL/CASC (
Possible Reactions of "Fisherians" to Our Toy Example II 2. Rejection Trial: Sometimes, Fisherians take observations with small <i>p</i> -values as reasons to <i>reject</i> null hypotheses. Is there "probabilistic <i>modus tollens</i> ?" $(MT) \frac{H \Rightarrow E}{\therefore \neg E \Rightarrow \neg H}$ (PMT) $\frac{\Pr(E H) \approx 1}{\therefore \Pr(\neg H \neg E) \approx 1}$ • While (MT) is valid, its inductive analogue (PMT) is not. One must assume $\Pr(E H) = 1$ to ensure $\Pr(\neg H \neg E) \approx 1$ (<i>pace</i> [5, §4.3] & [20, §1.7]). • This illegitimate form of inference has been used several times in the history of statistics ([5, §4.3] & [20, §1.7]). More recently, it has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).	en Fitelson	Remarks on the Philosophy of Statistics	6 Branden Fitelson	Remarks on the Philosophy of Statistics
 P. Rejection Trial: Sometimes, Fisherians take observations with small <i>p</i>-values as reasons to <i>reject</i> null hypotheses. Is there "probabilistic <i>modus tollens</i>?" (MT) H ⇒ E ∴ ¬E ⇒ ¬H (PMT) Pr(E H) ≈ 1 ∴ Pr(¬H ¬E) ≈ 1 (PMT) Pr(E H) ≈ 1 ∴ Pr(¬H ¬E) ≈ 1 (PMT) Pr(E H) ≈ 1 ∴ Pr(¬H ¬E) ≈ 1 (PMT) Pr(B) ≈ 1 (PM	Possible Reactions	of "Fisherians" to Our Toy Example II	Reacti	on of "Neyman-Pearsonians" to Our Toy Example
$(MT) \frac{H \Rightarrow E}{\therefore \neg E \Rightarrow \neg H} \qquad (PMT) \frac{\Pr(E \mid H) \approx 1}{\therefore \Pr(\neg H \mid \neg E) \approx 1}$ • While (MT) is valid, its inductive analogue (PMT) is not. One must assume $\Pr(E \mid H) = 1 \text{ to ensure } \Pr(\neg H \mid \neg E) \approx 1 \text{ (pace } [5, \$4.3] \& [20, \$1.7]).$ • This illegitimate form of inference has been used several times in the history of statistics ([5, \\$4.3] & [20, \\$1.7]). More recently, it has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).	Rejection Trial: Somet as reasons to <i>reject</i> nul	imes, Fisherians take observations with small <i>p</i> -values	N–P Reaction: recommending	The experiment is designed (<i>viz.</i> , \mathcal{M}) for the purpose of rejection of H_0 if + is observed and acceptance of H_0 if -
 While (MT) is valid, its inductive analogue (PMT) is not. One must assume Pr(E H) =1 to ensure Pr(¬H ¬E) ≈ 1 (pace [5, §4.3] & [20, §1.7]). This illegitimate form of inference has been used several times in the history of statistics ([5, §4.3] & [20, §1.7]). More recently, it has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]). For our M, the probability of a Type I error (size) is α = And, the probability of a Type II error (power) is β = Pr In rejecting H₀ on the basis of + (using M), we are not a (strongly) <i>believe</i> H₀; nor are we saying that + constitute <i>against</i> H₀ (vs H). Statistics is not in the businesses of stat	$H \Rightarrow$	insponeses. Is more probabilistic mounts fortens.	observeu. Ther	e are two types of errors we could make (in so using <i>M</i>).
• This illegitimate form of inference has been used several times in the history of statistics ([5, §4.3] & [20, §1.7]). More recently, it has been used by creationists to argue against evolution theory ([6], [12], [26], [11], [33]).	(M1) =	$\frac{E}{E \rightarrow \neg H} \qquad (PMT) \frac{\Pr(E \mid H) \approx 1}{\therefore \Pr(\neg H \mid \neg E) \approx 1}$	- Type I error:	rejecting H_0 (& accepting H) on the basis of + when H_0 is true. accepting H_0 (& rejecting H) on the basis of - when H_0 is false
	(M1) $\therefore \neg l$ While (MT) is valid, it $Pr(E \mid H) = 1$ to ensure	$\frac{E}{C \Rightarrow \neg H} \qquad (PMT) \frac{\Pr(E \mid H) \approx 1}{\therefore \Pr(\neg H \mid \neg E) \approx 1}$ s inductive analogue (PMT) is not. One must assume $\Pr(\neg H \mid \neg E) \approx 1 \text{ (pace [5, §4.3] & [20, §1.7]).}$	 Type I error: Type II error For our M, the And, the probability 	rejecting H_0 (& accepting H) on the basis of + when H_0 is true. accepting H_0 (& rejecting H) on the basis of – when H_0 is false. probability of a Type I error (size) is $\alpha = \Pr_{\mathcal{M}}(+ H_0) = 0.05$ bility of a Type II error (power) is $\beta = \Pr_{\mathcal{M}}(- H) = 0.05$.
$\mathcal{M}: X \sim Bin(n, \theta), H_0: \theta = \frac{1}{2}, \text{ and } H'_0: \theta \leq \frac{1}{2}. E: X = x \text{ sanctions rejection of}$ $H_0 \text{ at level } \alpha \text{ if } \Pr_{\mathcal{M}}(X \geq x \mid H_0) \leq \frac{\alpha}{2} \text{ and of } H'_0 \text{ if } \Pr_{\mathcal{M}}(X \geq x \mid H'_0) \leq \alpha. \text{ So, an}$ $x \text{ such that } \frac{\alpha}{2} < \Pr_{\mathcal{M}}(X \geq x \mid H_0) \leq \Pr_{\mathcal{M}}(X \geq x \mid H'_0) \leq \alpha \text{ sanctions rejection of}$ $H'_0 \text{ but not } H_0 [29, p. 77]. We may reject "A or B", but we may not reject A!$	(M1) $\therefore \neg I$ While (MT) is valid, it Pr($E \mid H$) =1 to ensure This illegitimate form of statistics ([5, §4.3] & creationists to argue ag	$\frac{E}{E \Rightarrow \neg H} \qquad (PMT) \frac{\Pr(E \mid H) \approx 1}{\therefore \Pr(\neg H \mid \neg E) \approx 1}$ s inductive analogue (PMT) is not. One must assume $\Pr(\neg H \mid \neg E) \approx 1 \text{ (pace [5, §4.3] & [20, §1.7]).}$ of inference has been used several times in the history r [20, §1.7]). More recently, it has been used by ainst evolution theory ([6], [12], [26], [11], [33]).	 Type I error: Type II error For our M, the And, the proba In rejecting H₀ (strongly) belie 	rejecting H_0 (& accepting H) on the basis of + when H_0 is true. accepting H_0 (& rejecting H) on the basis of – when H_0 is false. probability of a Type I error (size) is $\alpha = \Pr_{\mathcal{M}}(+ H_0) = 0.05$ bility of a Type II error (power) is $\beta = \Pr_{\mathcal{M}}(- H) = 0.05$. on the basis of + (using \mathcal{M}), we are not saying that we sho we H_0 ; nor are we saying that + constitutes <i>strong evidence</i>

nden Fitelson	Remarks on the Philosophy of Statistics	8	Branden Fitelson	Remarks on the Philosophy of Statistics	9
More on the "Neyma	n–Pearsonian" and "Fisherian" Approaches to	Statistics	The	e Naïve Bayesian Approach I	
• The key difference comparative. N-P I tests M with (simul	between the N–P and Fisherian approaches is looks at <i>both</i> H_0 <i>and</i> its alternatives (<i>e.g.</i> , <i>H</i>), ltaneously, sort of) low values of <i>both</i> α <i>and</i> β	that N–P is and ∴ seeks 3.	• The Naïve Bayesian <i>probability</i> among th terms of a more soph	aims to "accept" hypotheses with <i>maxima</i> ne available alternatives. [This aim will be nisticated, decision-theoretic Bayesian fran	<i>l posterior</i> explained in nework, below.]
• The Fisherian focus	ses <i>only</i> on the null H_0 , and \therefore worries <i>only</i> ab	out α .	• In our example, M d	lid not have enough structure to allow for c	alculation of
• The advantage of ig	gnoring β is that β is often difficult to calculate	e. If H_0 is a	the posterior $Pr(H_0 $	+) of H_0 . Information about the prior $Pr(H)$	I_0) is needed.
simple hypothesis ($\theta \neq \frac{1}{2}$). Calculating	$(\theta = \frac{1}{2})$, its negation will be a messy, compositing the likelihood (β) Pr($E \mid \neg H_0$) in such cases	e hypothesis is difficult.	• The main problem for [32]. In diagnostic to	or Naïve Bayesianism is the origin and stat esting cases, "base rates" or frequencies fro	us of the priors
• This problem of con	mputing likelihoods of composite hypotheses	plagues all	populations are often	a used as the "priors" in Bayes' Theorem.	Problems:
of the Paradigms (se	ee [29, ch. 7] on this problem for Likelihoodi	sm, and [24,	 How does one ch 	loose the appropriate reference class for such	ch frequencies?
p. 194–5] on this pr	roblem for more traditional statistical testing I	Paradigms).	The prior probab	ility of my having D will depend on the main idea to use as a reference $[27, 872]$ [17, pr	e-containing
One Paradigm faces	s this problem <i>head-on</i> , by endowing the mod	lel M with	The likelihoode I	Ide to use as a reference $[27, 972]$, $[17, pp]$.	119–123].
This is the Naïve Ba	ayesian approach to statistics, to which I now	turn.	the priors are me	$T_{\mathcal{M}}(+ \pm H)$ are resultent [51], causal propresent causal propresent at the second seco	mix" these [4]?
SJSU Philosophy	Presented at LLNL/CASC	08/07/02	SJSU Philosophy	Presented at LLNL/CASC	08/07/02
nden Fitelson	Remarks on the Philosophy of Statistics	10	Branden Fitelson	Remarks on the Philosophy of Statistics	11
The	e Naïve Bayesian Approach II		Sophisticated B	ayesianism, N–P, and Naïve Baye	sianism
• There have been ma "informationless" p	any attempts to provide objective accounts of priors [2, §5.6], [8]. Such an account (either lo	"invariant" or ogical or	• The sophisticated Bacognitive utility max	ayesian uses (personalistic) decision theory (imization) as their guide to inductive beha	(<i>i.e.</i> , expected vior.
empirical) would pl	lace priors on an objective footing (like $Pr_{\mathcal{M}}(\cdot)$	$+ \pm H)$).	• In this way, they are	similar to Neyman, who viewed statistics a	as prescribing

- Unfortunately, no satisfactory account has appeared, and the prospects for "Objective Bayesianism" do not look good (see [30] and [28] for discussion).
- This has lead most Bayesians to take a subjectivist line [2, pp. 99-102] in which $\Pr_{\mathcal{M}}(H)$ [$\Pr_{\mathcal{M}}(H|E)$] is taken to be a rational agent's degree of belief in *H* prior to [after] learning *E* (relative to background knowledge corpus \mathcal{M}).
- Sophisticated Bayesians move away from the unclear Fisherian or N-P notions of "acceptance", and even from the fundamental dogma that posterior probability distributions are the *sole* currency of statistical inquiry [23], [2].
- Such Bayesians think of statistical practice simply as a rational enterprise which may involve various (possibly competing) cognitive utilities [23].

SJSU Philosophy

Branden Fitelson

Branden Fitelson

08/07/02

SJSU Philosophy

"well performing" inductive rules for practitioners to use and follow.

they allow many cognitive utilities (not just α/β min. [2, pp. 471–472]).

(simpliciter) are all that you care about in the context of "acceptance".

• In order to maximize your expected cognitive utility, you should "accept"

hypotheses with maximal posterior probability (among the alternatives).

• In this sense, naïve Bayesianism is a special case of sophisticated Bayesianism

in which the agent has naïve, "truth-functional" cognitive utilities [2, §6.1.4].

Presented at LLNL/CASC

• For instance, say you assign cognitive utility 1 to "accepting" a true

• The Bayesian has a more general (albeit *subjective*!) view than Neyman, since

hypothesis and 0 to "accepting" a false hypothesis, and that truth and falsity

Branden Fitelson	Remarks on the Philosophy of Statistics	12 Bi	anden Fitelson	Remarks on the Philosophy of Statistics	13
Soph	isticated Bayesianism and Predictivism		Extra Slie	de: Explaining Fisher's False Dilemma	
 What if your c What if you are (t), and you warule) between y Then, you'll not inversely propose This kind of ut [15]) or verisir 	ognitive utilities are less naïve? re interested in <i>quantitatively approximating</i> a true distant to minimize the "distance" (really, <i>average</i> distancy your approximation (\hat{t}) and the true distribution? eed a finer-grained cognitive utility function — one wortional to some measure of the <i>divergence</i> between the tility function might be called predictive (by statistical militudinous (by philosophers of science/statistics like	stribution ce, as a which is t and \hat{t} . ans like e [23]).	 Fisher claimed that observation of a + (*) "<i>Either</i> a rare But, arguments of disjunction to hav M is correr (a) (i) If M is ∴ Either H 	at in examples like our diagnostic testing example, the - allowed us to infer the following disjunction: event [$Pr_{\mathcal{M}}(+ H_0) = 0.02$] has occurred, <i>or</i> H_0 is false." F Hacking [19, p. 82] and Royall [29, p. 77] show this the little force. Where does Fisher go wrong? ct. correct, then $H_0 \Rightarrow +$ is improbable [$Pr(+) = 0.02$]. T_0 is false or + is improbable.	
 There is a very statistical infer (subjective) Ba share predictiv Additional (go 	v lively debate currently raging on in the philosophy of rence (and in philosophy of science generally) betwee ayesians and (objective or frequentist) non-Bayesians ve/verisimilitudinous leanings in this sense [13], [1]. bod) Bayes/non-Bayes discussions: [14], [18], [7], [3]	of en who both , [21].	M is corre (b) (<i>ii</i>) If M is ∴ Either H • Argument (a) is v invalid. Fallacy: (ct. a correct, then $Pr(+ H_0) = 0.02$. H_0 is false or + is improbable. alid, but (<i>i</i>) is false. In (b), (<i>ii</i>) is true, but the argument is <i>ii</i>) \nvDash (<i>i</i>). <i>i.e.</i> , $Pr(+ H_0) = 0.02 \nvDash H_0 \Rightarrow Pr(+) = 0.02$ (why	· ?).
SJSU Philosophy	Presented at LLNL/CASC	08/07/02	SJSU Philosophy	Presented at LLNL/CASC 08	3/07/02
Branden Fitelson	Remarks on the Philosophy of Statistics	14 Bi	anden Fitelson	Remarks on the Philosophy of Statistics	15
References	an and D.I. Daile The sume futing much and a Densei an ani in den	Philosophy	Pacific Philosophical ([12] B. Fitelson, C. Steven:	Quarterly 79 (1998), 115–130. s, and E. Sober, <i>How not to detect design – critical notice: William</i>	
of Science 66 (199	(ay and R.J. Boik, <i>The curve fitting problem: a Bayesian rejoinder</i> , 99), no. 3, suppl., S390–S402, PSA 1998, Part I (Kansas City, MO). 000	 A. Dembski, "The design of the design of the	ign of inference", Philosophy of Science 66 (1999), 4/2–499. er, How to tell when simpler, more unified, or less ad hoc theories will	35
 [2] J.M. Bernardo and [3] G. Casella and R.I [4] L.J. Cohen, <i>Can h</i> Sciences 4 (1981). 	L. Berger, <i>Statistical inference</i> , Wadsworth & Brooks/Cole, 1990. <i>uman irrationality be experimentally demonstrated?</i> , Behavioral a	nd Brain	 [14] D. Freedman, Some is (B. Van Fraassen, ed.) [15] S. Geisser, Predictive 	sues in the foundation of statistics, Topics in the foundation of statistics, Kluwer Academic Publishers, 1997, pp. 19–39, 41–67, 69–83.	-33.
[5] A.I. Dale, A histor	ry of inverse probability: From Thomas Bayes to Karl Pearson, Sp	pringer, 1991.	[16] G. Gigerenzer, <i>Adapti</i>	<i>ve thinking</i> , Oxford University Press, 2000.	
 [6] W.A. Dembski, <i>Tr</i> Cambridge Univer [7] B. Efron, <i>Controv</i> 	ne aesign inference: Eliminating chance through small probabilities rsity Press, 1998. ersies in the foundations of statistics, American Mathematical Mon	nthly 85	 [17] D. Gillies, Philosophia [18] I.J. Good, The Bayes/n Association 87 (1992) 	cai ineories of probability, Koutledge, 2000. non-Bayes compromise: a brief review, Journal of the American Statistic 1, 597–606.	cal
(1978), 231–246.[8] R. Festa, <i>Optimun</i>[9] R.A. Fisher, <i>Statis</i>	n inductive methods, Kluwer Academic Publishers, 1993. stical methods for research workers, Hafner Publishing Co., 1958.		 [19] I. Hacking, Logic of st [20] T. Hailperin, Sententic applications, Lehigh U 	tatistical inference, Cambridge University Press, 1965. al probability logic: Origins, development, current status, and technical University Press, 1996.	!
[10], <i>Statistica</i> [11] B. Fitelson and E.	al methods and scientific inference, Hafner Publishing Co., 1959. Sober, Plantinga's probability arguments against evolutionary na	ıturalism,	[21] C. Howson and P. Urb[22] J. J. Koehler, <i>The base</i>	each, Scientific reasoning: The Bayesian approach, Open Court, 1993. e rate fallacy reconsidered: Normative, descriptive and methodological	
SJSU Philosophy	Presented at LLNL/CASC	08/07/02	SJSU Philosophy	Presented at LLNL/CASC 08	3/07/02

Brande	en Fitelson	Remarks on the Philosophy of Statistics	16
$\left(\right)$	challenges, Behavioral an	nd Brain Sciences 19 (1996), 1–53.	
[23]	P. Maher, Betting on theories, Cambridge University Press, 1993.		
[24]	D. Mayo, Error and the growth of experimental knowledge, University of Chicago Press, 1996.		
[25]	J. Neyman, First Course in Probability and Statistics, Henry Holt & Co., 1950.		
[26]] A. Plantinga, Warrant and proper function, Oxford University Press, 1993.		
[27]	H. Reichenbach, The Theory of Probability. An Inquiry into the Logical and Mathematical Foundations of the Calculus of Probability, University of California Press, 1949.		matical
[28]	R.D. Rosenkrantz, <i>Bayes</i> (1979), no. 4, 441–451.	R.D. Rosenkrantz, <i>Bayesian theory appraisal: a reply to Seidenfeld</i> , Theory and Decision 11 (1979), no. 4, 441–451.	
[29]	R. Royall, Statistical evid	R. Royall, Statistical evidence: A likelihood paradigm, Chapman & Hall, 1997.	
[30]	T. Seidenfeld, Why I am not an objective Bayesian; some reflections prompted by Rosenkrantz, Theory and Decision 11 (1979), no. 4, 413–440.		
[31]	B. Skyrms, Pragmatics and empiricism, Yale University Press, 1984.		
[32]	E. Sober, <i>Bayesianism</i> — <i>its scope and limits</i> , Bayes' Theorem (R. Swinburne, ed.), Oxford University Press, 2002, Proceedings of the British Academy Press, vol. 113.		
[33]	, Intelligent desig Religion (forthcoming), 2	an and probability reasoning, International Journal for the 2002.	Philosophy of
	SJSU Philosophy	Presented at LLNL/CASC	08/07/02