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f Overview of Presentation' \

What are theendsof statistical experiment, analysis, and inference?

What are the mostfEectivemeandor achieving these ends?

Several paradigms for statistics have been developed — each of these
presupposes answers to these key “philosophical” questions about statisti

Existing paradigms for statistics include the following:

Likelihoodist (elative evidential supportia likelihood ratios)

Naive Bayesian (posterior probability maximization)

Fisherian (significance testifrgjection trials)

Neyman—Pearsonian (Typ&ype Il error minimization)
— Sophisticated Bayesian (expected cognitive utility maximization)

Predictivist (predictive accuracy maximizatidivergence minimization)

k. | will try to classify each of these paradigms wrt our questions above. /
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f An Elementary Example & Some Initial Distinctions | I \

e John Doe is about to be tested for some dis&asEhe experimental design
(or model)M of the diagnostic test has the followirgror characteristics

Test Result

Positive  Negative
_ Present 0.95 0.02
DiseaseD  \jcent  0.05 0.98

e LetHy = —H = John Doe does not hai, H = he hadD, + = test is positive,
and- = test is negative. Then, our experimental madeis such that:

Pry(+H) = 0.95  Pry(+|Hg) = 0.05
Pry(=1H) =0.02  Pry(-|Ho) = 0.98
o M doesnot tell us the prior probability (or “base rate”) Bt} of H. If Pr(H)

K is very low, then Pt | +) will be low (physicians often get this wrongd ], [ D.j
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/ An Elementary Example & Some Initial Distinctions Il I \

e Bayes’ Theorem allows us to calculate Ri(), as follows:

Pr(+|H) - Pr(H)
Pr(+|H) - Pr(H) + Pr(+ | Hop) - Pr(Ho)
2 0.95- Pr(H)
~ 0.95-Pr(H) + 0.02- (1 - Pr(H))

PrH|+) =

e So, if PrH) is very small, then PH | +) will also be small, even though the

— Naive Bayesian: & alone is insfficient to determine thposteriorof H.
We can't properly interpret & without information about therior of H.

— Likelihoodist: a+ alone yields a largékelihood-ratio| F-% = 475 in

favor of H. So, a+ meansstrong evidence in favor dfl (versus Hp).

diagnostic test is (intuitively) “well designed”. Now, some initial distinctions:

K — The reactions of the other Paradigms will be more subtle and compmjx
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will treat them next. I'll return to Bayesianism and Likelihoodism later. .
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f Possible Reactions of “Fisherians” to Our Toy Example I \

e A Fisherian would tend to interpret4aresult in our toy example in one of the
following two ways (seed9, chapter 3] for detailed critical discussion):
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1. Significance Testlf we takeHp = —H to be the null hypothesis, then a
Fisherian might respond to4aby saying that we have observed a result whig
is significant at the 2% levebr with a p-value of 0.02 Fisher [LO, p. 39] says:

(*) “ Either a rare event [By;(+| Ho) = 0.02] has occurredyr Hy is false.”

e Many statisticians (including Fisher himself) have interprgtedilues as
measures of evidential streng#ccording to Fisherianghe lower the
p-value, the stronger the evidence against the null hypoth@gis 80].

e Let M = the tosses of a coinareBin(1, 6) (viz, i.i.d., Bernoulli),E = a
sequence afi tosses ot, andHo: 8 = 3. Then, Px(E | Ho) = (3)", for any E.

e .. For largen, any outcomek is “strong evidence againsty!” This takes the

k sting out of (*), and the evidential interpretationpfvalues (seell9, p. 82])/
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f Possible Reactions of “Fisherians” to Our Toy Example III \

2. Rejection Trial Sometimes, Fisherians take observations with spatlues
as reasons tgject null hypotheses. Is there “probabilistitodus tollens?”

PrE|H)~ 1
S Pr=H|-E)~ 1

e While (MT) is valid, its inductive analogue (PMT) i®t. One must assume
Pr(E|H) =1to ensure PrH | -E) ~ 1 (pace[5, §4.3] & [20, §1.7]).

e This illegitimate form of inference has been used several times in the hista
of statistics (p, §4.3] & [20, §1.7]). More recently, it has been used by
creationists to argue against evolution theoty,[12], [26], [11], [33)]).
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H=E
..-E= -H

(MT) (PMT)

o M: X ~ Bin(n,8), Ho: 6 = 3, andH{;: 6 < . E: X = x sanctions rejection of
Ho at levela if Pry (X > x| Ho) < 5 and ofH[ if Pry¢(X > x| Hp) < . So, an
xsuch thaty < Pryi(X > x| Ho) < Pry(X 2 X|H{) < a sanctions rejection of

ry

Hg butnot Ho [29, p. 77]. We may rejectA or B”, but we maynot rejectA!j

SJSU Philosophy Presented at LLNL/CASC 08/07/02

Branden Fitelson

-

Remarks on the Philosophy of Statistics 7

Reaction of “Neyman—Pearsonians” to Our Toy Exampls \

e N-P ReactionThe experiment is designed#., M) for the purpose of
recommendingejectionof Hy if + is observed andcceptancef Hy if — is
observed. There are two typesasforswe could make (in so usiny():

— Type | error rejectingHy (& acceptingH) on the basis of whenHjy is true.

— Type Il error. acceptingHo (& rejectingH) on the basis of whenHy is false.

e For ourM, the probability of a Type | errois(ze) is @ = Pry(+ | Hp) = 0.02.
And, the probability of a Type Il erropwel) is 8 = Pry(—|H) = 0.05.

¢ InrejectingHy on the basis of (usingM), we arenot saying that we should
(strongly)believe Hp; nor are we saying that constitutesstrong evidence

against Hp (vs H). Statistics is not in the businesses of grounding such claiims.

e Statistics is in the business of providing “performance characteristics of ru
of inductive behavior based on random experimenit§; p. 11]. In this case,

K M hassize(or significance levgla = 0.02 andpowerg = 0.05. End of storyj
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More on the “Neyman—Pearsonian” and “Fisherian” Approaches to Statistic The Naive Bayegian Approach |I
e The key Fiiference between the N-P z'md Fisheri.an approaches is that N-P is « The Néve Bayesian aims to “accept” hypotheses witiximal posterior
compar atl_ve. N__P looks aboth Ho and its alternativesgg., H), and.. seeks probability among the available alternatives. [This aim will be explained in
testsM with (simultaneously, sort of) low values béth o and 5. terms of a more sophisticated, decision-theoretic Bayesian framework, below.]
e The Fisherian focusesnly on the nullHo, and.. worriesonly abouta. o In our exampleM did not have enough structure to allow for calculation of
e The advantage of ignoringis thatg is often dificult to calculate. IHg is a theposteriorPr(Hg | +) of Hy. Information about th@rior Pr(Hp) is needed.
. . _ l . . . .
S|mplle hypothesisi(= 3), its negation will be a messy, composite hypothesfs e The main problem for Nige Bayesianism is the origin and status of thirs
(6 # 3)- Calculating the likelihoodd) Pr(E | -Ho) in such cases is flicult. [37]. In diagnostic testing cases, “base ratesfrefjuencies from actual
e This problem of computing likelihoods of composite hypotheses plagues {ll populationsare often used as the “priors” in Bayes’ Theorem. Problems:
of the Paradigms (se&{, ch 7] on this problem for Likelihoodism, and{, — How does one choose the appropriatterence clasfor such frequencies?
p. 194-5] on this problem for more traditional statistical testing Paradigms). The prior probability of my havind will depend on the me-containing
e One Paradigm faces this problémad-on, by endowing the modéV with class that we decide to use as a refereace{72], [17, pp. 119-125].
enough structure to compuddl probabilities andill likelihoods inall cases. — The likelihoods Py (+| = H) areresilient [31], causal propensitiebut
K This is the Néve Bayesian approach to statistics, to which | now turn. / k the priors arenere actual frequencieShould a Bayesian “mix” these]P/
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f The Naive Bayesian Approach III \ / Sophisticated Bayesianism, N—P, and Nee BayesianisEI \
e There have been many attempts to provitiectiveaccounts of “invariant” or e The sophisticated Bayesian uses (personalidtic)sion theoryi.e., expected
“informationless” priors P, §5.6], [8]. Such an account (either logical or cognitive utility maximizatioj as their guide to inductive behavior.
empirical) would place priors on an objective footing (likeit#-| + H)). « In this way, they are similar to Neyman, who viewed statistics as prescribirg
o Unfortunately, no satisfactory account has appeared, and the prospects far “well performing” inductive rules for practitioners to use and follow.
“Objective Bayesianism” do not look good (se&]and [2] for discussion). e The Bayesian has a more general (albefjective!) view than Neyman, since
e This has lead most Bayesians to takeuajectivistline [2, pp. 99-102] in they allowmany cognitive utilities(not juste/B min. [2, pp. 471-472]).
WhIC.h Pry(H) [PrM(H.| E)lis takf-:‘n to be aational agent’s degree of beliif « For instance, say you assign cognitive utility 1 to “accepting” a true
H prior to [after] learninge (relative to background knowledge corpu. hypothesis and 0 to “accepting” a false hypothesis, and that truth and falsity
e Sophisticated Bayesians move away from the unclear Fisherian or N-P (simpliciter) areall that you care about in the context of “acceptance”.
notions of “acceptance”, and even from the fundamental dogma that postgrior

probability distributions are thsole currency of statistical inquiryZ[3], [2].

e Such Bayesians think of statistical practice simply ast®nal enterprise

which may involve various (possibly competing)gnitive utilities[23].

J

0807/02

SJSU Philosophy Presented at LLNL/CASC

e In order to maximize your expected cognitive utility, you should “accept”
hypotheses witimaximal posterior probabilitf@among the alternatives).

¢ In this sense, rige Bayesianism is a special case of sophisticated Bayesiar

ism

K in which the agent has hae, “truth-functional” cognitive utilities, §6.l.4].j
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Sophisticated Bayesianism and Predictivisj \

What if your cognitive utilities are less hae?

What if you are interested iguantitatively approximating a true distribution
(t), and you want to minimize the “distance” (realéyerage distance, as a
rule) between your approximatiof) @nd the true distribution?

Then, you'll need a finer-grained cognitive utility function — one which is
inversely proportional to some measure of tivergence betweert andt.

This kind of utility function might be calleg@redictive(by statisticians like
[15]) or verisimilitudinous(by philosophers of scientsatistics like £3]).

There is a very lively debate currently raging on in the philosophy of
statistical inference (and in philosophy of science generally) between
(subjective) Bayesians and (objective or frequentist) non-Bayesians who f
share predictiveerisimilitudinous leanings in this sens&d, [1].

Additional (good) Bayeson-Bayes discussionst4], [18], [7], [3], [21]. /
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f Extra Slide: Explaining Fisher’s False DiIemmaI \

e Fisher claimed that in examples like our diagnostic testing example, the
observation of & allowed us to infer the following disjunction:

(*) “ Either a rare event [By;(+| Ho) = 0.02] has occurredyr Hy is false.”

e But, arguments of Hackind.p, p. 82] and Royall P9, p. 77] show this
disjunction to have little force. Where does Fisher go wrong?
M is correct.
(a) (i) If M is correct, therHy = + is improbable [Prf) = 0.02].
.. EitherHy is false or+ is improbable.

M is correct.
(b) (it) If M is correct, then P#{| Hp) = 0.02.
.. EitherHy is false or+ is improbable.

e Argument (a) is valid, buti) is false. In (b), {i) is true, but the argument is

k invalid. Fallacy: (i) & (i). i.e., Pr(+|Hp) = 0.02¢ Ho = Pr(+) = 0.02 (why?y
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