HYPOTHESES & KEY QUESTIONS

A few years ago my former employer was called in by the CTO of a large, well-known maker of high-end consumer electronics. This company, which prides itself on its progressive approach to IT management, operates a large, reasonably up-to-date network and a full suite of enterprise applications. The CTO, Barry Eiger (a pseudonym), an extremely smart man, is fully conversant in the prevailing technology trends of the day. In manner and in practice, he tends to be a conservative technology deployer. Unimpressed with fads and trends, he prefers to hydrofoil above the choppy technological seas with a slightly bemused sense of detachment. Facts, rather than the ebbs and flows of technology, weigh heavily in his decision-making. In our initial conversations, he displayed an acute awareness of industry IT spending benchmarks. We discovered later that he had spent significant sums of money over the years on advisory services from Gartner Group, Meta Group, and others.

If he is so well informed, why did he call us in, I wondered? Barry’s problem was simple. His firm had historically been an engineering-driven company with limited need for Internet applications. More recently, his senior management team had asked him to deploy a series of transactional financial systems that would offer customers order management, loan financing, and customer support services. These public-facing systems, in turn, connected back to several internal manufacturing applications as well as to the usual suspects—PeopleSoft, SAP, Siebel, and Oracle. A prudent man, Barry wanted to make sure his perimeter and application defenses were sufficient before beginning significant deployments. He wanted to know how difficult it might be for an outsider to penetrate his security perimeter and access sensitive customer data, product development plans, or financial systems.

Barry asserted that his team had done a good job with security in the past. “What if you can’t get in?” he asked rhetorically. Despite his confidence, his dull ache persisted. His nagging feeling compelled him to find out how good his defenses really were. He also wanted to get some benchmarks to see how well his company compared to other companies like his.

Barry wanted a McKinsey-style “diagnostic.” This kind of diagnostic first states an overall hypothesis related to the business problem at hand and then marshals evidence (metrics) that supports or undermines the theory. The essence of the Mc​Kinsey diagnostic method is quite simple: 

· The analysis team identifies an overall hypothesis to be supported. Example: “The firm is secure from wireless threats by outsiders.” 

· The team brainstorms additional subhypotheses that must hold for the overall hypothesis to be true. For example, to support the wireless hypothesis we just identified, we might pose these subhypotheses: “Open wireless access points are not accessible from outside the building” and “Wireless access points on the corporate LAN require session encryption and reliable user authentication.” 

· The team examines each subhypothesis to determine if it can be supported or disproved by measuring something. If it cannot, the hypothesis is either discarded or decomposed into lower-level hypotheses. 

· For each lowest-level hypothesis, the team identifies specific diagnostic questions. The answers to the questions provide evidence for or against the hypothesis.

Diagnostic questions generally take the form of “The number of X is greater (or less) than Y” or “The percentage of X is greater (or less) than Y.” For example, “There are no open wireless access points that can be accessed from the building’s parking lot or surrounding areas” or “100% of the wireless access points on the corporate LAN require 128-bit WPA security.” The diagnostic questions dictate our metrics. The primary benefit of the diagnostic method is that hypotheses are proven or disproven based on empirical evidence rather than intuition. Because each hypothesis supports the other, the cumulative weight of cold, hard facts builds a supporting case that cannot be disputed. A secondary benefit of the diagnostic method is that it forces the analysis team to focus only on measurements that directly support or disprove the overall hypothesis. Extraneous “fishing expeditions” about theoretical issues that cannot be measured automatically filter themselves out.

So far, the sample hypotheses and diagnostic questions I have given are rather simplistic. Why don’t we return to our friend Barry’s company for a real-world example?

Recall that Barry’s original question was “Is my company’s customer data secure from outside attack?” Our overall hypothesis held that, indeed, the company was highly vulnerable to attack from outsiders. To show that this statement was true (or untrue), we constructed subhypotheses that could be supported or disproven by asking specific questions whose answers could be measured precisely and empirically. The table above shows a subset of the diagnostics we employed to test the hypothesis. Note that these diagnostics do not exhaust the potential problem space. Time and budget impose natural limits on the diagnostics that can be employed.

To answer the diagnostic questions we posed, we devised a four-month program for Barry’s company. We assessed their network perimeter defenses, internal networks, top ten most significant application systems, and related infrastructure. When we finished the engagement and prepared our final presentation for Barry, his team, and the company’s management, the metrics we calculated played a key role in proving our hypothesis. The evidence was so compelling, in fact, that the initial engagement was extended into a much longer corrective program with a contract value of several million dollars.
Troubleshooting and Diagnosis

A common use of Bayesian belief network models is to diagnosis system failures in a probabilistic framework.

This has several advantages over conventional rule-based or decision-tree methods, since Bayes nets support uncertain evidence in a theoretically correct fashion. In addition, prior distributions in Bayes nets can be built that model logical functions such as AND, OR and NOT using what are known as deterministic nodes; that is, nodes whose distributions contain only zeroes and ones. Such nodes, therefore, act as logic gates.

A key question in decision theory is this: In the current evidence setting, what new evidence would most effectively lead to a clear diagnosis? Often known as the value of information, information theory provides mathematical approaches to answering this question.

Types of Decision-Theoretic Diagnosis

MSBNX supports two algorithms that use information theory to order or rank variables in a Bayes net according to their information weight or influence.

In either scenario, variables or nodes in the model play certain roles. These roles are also known as labels, and must be assigned correctly or the results cannot be interpreted.

Both methods produce as a result an ordered list of variables ranked by a value of information score. In a typically implementation, for example, this list would determine the order of questions being asked of a diagnostician or technician.

Diagnosis: Mutual Information

In such a model, variables are assigned one of two roles:

1. Hypothesis Node. Also known as a hidden variable, this is typically a variable that cannot be directly observed. It is the target or purpose of the overall diagnosis.

2. Information Node. An observable variable that influences the hypothesis node(s) in the model.

There may be other nodes in the model which are not labeled; although they influence inference in the normal way, they do not otherwise enter into the diagnostic process.

Utility-based diagnosis uses mutual information to compute the amount of weight or "lift" that evidence about the state of each information node would bring to each hypothesis variable. The resulting ranking of uncertain (undetermined) information nodes is used to expedite the diagnostic process.

Troubleshooting: Fix-or-Repair Planning

In addition to being assigned to roles, variables in a troubleshooting model are also given one or more costs. The belief network author may consider that these costs are measured in dollars (or other monetary currency), time (in minutes or seconds) or any other unit that is consistent with the problem formulation.

Troubleshooting uses an algorithm that iterates over all reasonable repair plans in an attempt to find the ones with the highest likelihood of success at the cheapest cost. The result is a list of nodes, ordered by cost. Establishing evidence about the top-ranked (cheapest) node is guaranteed (within the limits of the model) to lead to correct diagnosis in the shortest and cheapest number of steps.

Requirements for Diagnosis

To perform mutual information diagnosis in a model:

· At least one node in a diagnostic model must be identified as an hypothesis node

· At least two of its nodes must be identified as information nodes.

Requirements for Troubleshooting

Cost Factors

There are three types of costs that are important in a troubleshooting model.

· Cost to Observe. This is the cost of observing a symptom or sensor. For example, testing the battery of a car or running a blood test for gram-positive bacteria.

· Cost to Fix. This is the cost of fixing or replacing a component in a system. For example, replacing the power supply in a computer.

· Service cost. This is a cost assigned to the network or model as a whole. In other words, it indicates the cost that would be expected if the diagnostic operation failed. For example, if a computer server in a network could not be repaired through diagnosis it would have to be replaced.

Each of the different possible roles of variables in troubleshooting networks may have either a cost to observe, a cost to fix, both or neither. The service cost of the model is treated as the cost to fix for the entire model as a whole. Note: The service cost is required to perform troubleshooting.
The roles of variables in a troubleshooting model and their costs are as follows

	Name
	Costs Allowed
	Purpose

	informational
	observe
	Used to define observable evidentiary variables

	problem-defining
	fix
	Used to define primary symptoms of failure; that is, the element of the model that is the target of the diagnosis.

	fixable and observable
	observe and fix
	Used to define observable and replaceable elements

	fixable but unobservable
	fix
	Used to define elements that can only be replaced or repaired

	unfixable
	neither
	Used to define elements that can neither be fixed or observed

	other
	neither
	Used to define variables that play no direct part in the diagnostic process. These may be deterministic or "modal" variables that reshape the problem in a logical fashion.


Establishing "Problem" Nodes

The most vital part of a troubleshooting network is its problem nodes. These nodes must be declared in a particular manner: state zero (the first state declared) must be associated with the normal behavior of the component or element. All other states must be associated with the mutually exclusive and exhaustive set of states associated with failure modes of the component. Many problem nodes have only two states: "Works" and "Doesn't Work". If a problem node has more than two states, they must correlate to clearly distinct situations. Consider a computer printer with four states: "Works", "No Paper is Output" "Printing is Very Slow", and "Printing is Garbled". In each case, observation allows its problem state to be distinguished. (There is, however, some ambiguity-- consider a case where printing is both garbled and slow.)

Multiple problem nodes may be defined, but only one is actually considered during any given troubleshooting session.

Using Troubleshooting

The mechanics of troubleshooting work as follows.

1. One of the problem nodes is set (instantiated) to one of its problem states (that is, a state other than state zero).

2. The Troubleshooting Recommendations algorithm is run, and a ranked list of nodes is returned, each with its predicted utility.

3. The highest (first) variable in the ranked list is the one with the lowest cost. The technician or diagnostician would then attempt to gather evidence about this variable.

4. The evidence found about the highest ranked variable is entered as evidence into the model. Alternatively, evidence can be entered for any other uninstantiated node in the collection.

5. Return to step 2.

