

Modelos Constitutivos

CONTEÚDO

1.	Introdução	2
1.1.	Modelo Hiperbólico	3
1.1.1.	Variação da curva tensão x deformação com a tensão confinante	6
1.1.2.	Previsão de curva tensão x deformação	7
1.1.3.	Comportamento inelástico	8
1.1.4.	Variação de volume não linear	9
1.1.5.	Não linearidade da envoltória de ruptura	12
1.1.6.	Comentários finais	14
1.1.7.	Exemplo de utilização do modelo hiperbólico	16
1.1	7.1. Definição de c e ϕ	16
1.1	7.2. Cálculo de K _h e n	16
1.1	7.3. Cálculo de k_b e m	17

1. INTRODUÇÃO

Os modelos constitutivos têm a função de reproduzir, interpretar e prever o comportamento tensão x deformação de um determinado material. Dependendo do material, este comportamento pode ser distinto. A Tabela 1 mostra diversos exemplos.

Tabela 1. Curvas σ x ϵ

1.1. Modelo Hiperbólico¹

O modelo hiperbólico² é um classificado na categoria de elástico e não linear. A grande vantagem deste modelo está na sua generalidade. O modelo pode ser usado para representar curvas $\sigma x \epsilon$ de solos que podem variar desde argilas, areias até pedregulhos. Pode ainda ser usado para análises em termos drenado ou não drenado.

Na sua forma original, o modelo emprega os módulos tangente (E_t), que variam em função dos níveis de tensão.

O modelo assume que as curvas tensão *v*s deformação, sob determinada tensão confinante σ_3 , podem ser aproximadas razoavelmente por hipérboles como mostrado na Figura 2.

Figura 1. Curva hiperbólica

Duncan e Chang (1970) derivaram a equação da hipérbole chegando a

$$\frac{d(\sigma_1 - \sigma_3)}{d\varepsilon_a} = \frac{1}{a + b\varepsilon_a} - \frac{b\varepsilon_a}{(a + b\varepsilon_a)^2}$$

para $\varepsilon = 0$ tem-se

² Duncan e Chang 1970, Nonlinear analysis of stress and strain in soils. Journal of Soil Mechanics and Foundation Division , ASCE, vol 96, no. SM5, September

Kondner e Zelasco (1963)

Konder (1963) - ASCE

¹ Duncan J.M. Byrne, P. Wong., K Marry, P. Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses. Department of Civil Engineering, University of California, Berkley. Report no. UCB/GT/80-01,

$$\left[\frac{d(\sigma_1 - \sigma_3)}{d\varepsilon_a}\right]_{\varepsilon=0} = \frac{1}{a} = E_i$$

Por outro lado, para $\epsilon=\infty,$ considerando neste caso a ≈ 0

$$\lim_{\varepsilon \to \infty} \sigma_1 - \sigma_3 = \lim_{\varepsilon \to \infty} \frac{\varepsilon_a}{a + b\varepsilon_a} = \frac{1}{b}$$

Esta hipérbole (Figura 2) pode ser matematicamente descrita pela seguinte equação:

$$\sigma_1 - \sigma_3 = \frac{\varepsilon_a}{a + b\varepsilon_a} = \frac{\varepsilon_a}{\frac{1}{E_i} + \frac{\varepsilon_a}{(\sigma_1 - \sigma_3)_{ult}}}$$

onde Ei é o modulo de Young inicial e $(\sigma_1 - \sigma_3)_{ult}$ a assíntota da curva, associada à resistência do solo. Se a equação da hipérbole é transformada (Figura 2b), obtem-se uma relação linear.

Rearranjando a equação acima tem-se a equação de uma reta:

$$\frac{\varepsilon}{\sigma_1 - \sigma_3} = \frac{1}{E_i} + \frac{1}{(\sigma_1 - \sigma_3)_{ult}}\varepsilon$$

A partir do traçado da curva transformada (Figura 2b) obtêm-se os valores dos parâmetros **a** e **b**

Quando se utilizam resultados experimentais (ensaios de compressão triaxial convencionais) os pontos muitas vezes não se ajustam perfeitamente ao longo da reta da curva

transformada. Solos rígidos tendem a apresentar uma concavidade voltada para cima, enquanto que solos moles fornecem uma concavidade na direção oposta.

Casos em que o trecho inicial da curva tensão x deformação é linear, a curva transformada tende a ser horizontal

Figura 3. Aplicação do modelo hiperbólico

Caso não se disponha de ferramenta adequada para ajuste dos resultados experimentais, recomenda-se que a reta seja definida a partir de pontos correspondentes a 70% e 95% da resistência. Esta recomendação foi baseada em analise das centenas de curvas correspondentes a um grande número de materiais

Figura 4. Seleção ideal de pontos de ajuste do modelo

1.1.1. Variação da curva tensão x deformação com a tensão confinante

Todos os solos apresentam curvas tensão x deformação que variam em função do confinamento. A variação de E_i com a tensão confinante (σ_3) é representada por equação sugerida por Janbu (1963)³:

$$E_i = K Pa \left(\frac{\sigma_3}{Pa}\right)^n \tag{2}$$

onde:K e n são parâmetros adimensionais e Pa a pressão atmosférica (=101,3 kPa). A função da pressão atmosférica é possibilitar a transformação de unidades; já que os valores de **K** e **n** independem da unidade adotada. A variação de E_i com a tensão confinante (σ_3) está representada graficamente na Figura 5

Figura 5. Variação do modulo tangente inicial com a tensão confinante

A variação de $(\sigma_1 - \sigma_3)_{ult}$ com a tensão confinante σ_3 é feita relacionando-se $(\sigma_1 - \sigma)_{ult}$ com a resistência do solo, dada pela diferença $(\sigma_1 - \sigma_3)_{f}$:

$$(\sigma_1 - \sigma_3)_f = R_f (\sigma_1 - \sigma_3)_{ult}$$
(3)

onde R_f é denominado razão de ruptura. Em seguida, a associação de $(\sigma_1 - \sigma_3)_f$ com σ_3 é feita usando o critério de ruptura de Mohr-Coulomb (Figura 6):

Na pratica, R_f varia dependendo do ensaio considerado, recomenda-se adotar valor médio. Em geral, o valor de R_f situa-se entre 0,7 e 0,95.

³ Jambu (1963) Soi compressibility as determined by Oedometer and triaxial tests. European Conf. On Soil Mechanics and Foundation Engineering, Wissbaden, Germany, vol 1, pp 19-25.

1.1.2. Previsão de curva tensão x deformação

A partir da definição dos parâmetros do modelo hiperbólico (Tabela 2) a previsão da curva tensão x deformação para níveis de tensão confinante diferentes dos determinados experimentalmente pode ser feita a partir de:

$$\sigma_{1} - \sigma_{3} == \frac{\varepsilon_{a}}{\frac{1}{K Pa \left(\frac{\sigma_{3}}{Pa}\right)^{n}} + \frac{\varepsilon_{a}}{\left[\frac{2c\cos\phi + 2\sigma_{3} \operatorname{sen}\phi}{1 - \operatorname{sen}\phi}\right]}}{\frac{R_{f}}{R_{f}}}$$

Tabela 2. Parâmetros do modelo hiperbólico para previsão de curvas $\sigma \times \epsilon$.

Parâmetro	Função				
K, n	Relaciona E_i com σ_3				
С, ф	Relaciona (σ_1 - σ_3) _f com σ_3				
R _f	Razão de ruptura: relaciona (σ_1 - σ_3) _{ult} com (σ_1 - σ_3) _f - Tipicamente entre 0,7 e 0,95				

1.1.3. Comportamento inelástico

A variação do modulo tangente (E) com a tensão confinante σ_3 é feita derivando a equação com relação a ϵ e usando as demais equações do modelo :

$$\frac{d(\sigma_{1}-\sigma)_{3}}{d\varepsilon_{a}} = \frac{1}{a+b\varepsilon_{a}} - \frac{b\varepsilon_{a}}{(a+b\varepsilon)^{2}} = \frac{a+b\varepsilon_{a}}{(a+b\varepsilon_{a})^{2}} - \frac{b\varepsilon_{a}}{(a+b\varepsilon_{a})^{2}} = \frac{a}{(a+b\varepsilon_{a})^{2}} = E_{t}$$

$$E_{t} = \left[1 - \frac{R_{f}(\sigma_{1}-\sigma_{3})(1-sen\phi)}{2c\cos\phi+2\sigma_{3}sen\phi}\right]^{2} K Pa \left(\frac{\sigma_{3}}{Pa}\right)^{n}$$
(5)

Se a amostra é descarregada em algum instante de ensaio, os resultados indicam um módulo de descarregamento (E_{ur}) maior do que o módulo de carregamento, como mostrado na Figura 7. Com isso verifica-se o comportamento inelástico, uma vez que somente parte das deformações são recuperadas no descarregamento. No recarregamento existe uma histeresis, mas é neste trecho é possível aproximar o comportamento como elástico e linear; isto é mantendo o mesmo módulo E_{ur}; isto é

$$(E_{ur})$$
descarregamento = (E_{ur}) recarregamento

podendo ser calculado por

$$E_{ur} = K_{ur} Pa \left(\frac{\sigma_3}{Pa}\right)^n \tag{6}$$

O parâmetro K_{ur} é geralmente superior a K . Solos arenosos densos podem fornecer valores 20% maiores e solos fofos tendem a mostrar valores 3 vezes superiores.

Figura 7. Variação dos modulo tangente inicial com a tensão confinante

1.1.4. Variação de volume não linear

Segundo a Teoria da Elasticidade, a inclinação da curva de variação de volume no ensaio triaxial convencional, é dada por:

$$\left. \begin{array}{c} \varepsilon_{\nu} = \varepsilon_{a} + 2\varepsilon_{r} \\ \varepsilon_{r} = -\nu\varepsilon_{\nu} \end{array} \right| \therefore \varepsilon_{\nu} = \varepsilon_{a} (1 - 2\nu) \Longrightarrow \frac{d\varepsilon_{\nu}}{d\varepsilon_{a}} = (1 - 2\nu)$$

Muitos solos apresentam curvas de variação de volume, cujo incremento $d\varepsilon_v$ depende do nível de tensões (Figura 8). Este comportamento torna implícita a variação do coeficiente de Poisson com o nível de tensões (σ_1 - σ_3).

Figura 8. Variação de coeficiente de Poisson

Ainda segundo a teria da elasticidade, define-se como módulo de deformação volumétrica B a relação:

$$B = \frac{\Delta \sigma_1 + \Delta \sigma_2 + \Delta \sigma_3}{3\varepsilon_v}$$

Em um ensaio triaxial convencional, por exemplo, $\Delta \sigma_2 = \Delta \sigma_3 = 0$, então .

$$B = \frac{\Delta \sigma_1}{3\varepsilon_v} = \frac{\Delta \sigma_d}{3\varepsilon_v} = \frac{\Delta (\sigma_1 - \sigma_3)}{3\varepsilon_v}$$

mas

$$\frac{E_{t} = \frac{d(\sigma_{1} - \sigma)_{3}}{d\varepsilon_{a}}}{\frac{d\varepsilon_{v}}{d\varepsilon_{a}} = (1 - 2\nu)} \Rightarrow B = \frac{\Delta(\sigma_{1} - \sigma_{3})}{3\varepsilon_{v}} = \frac{E_{t}}{3(1 - 2\nu)}$$

A hipótese que o módulo de variação volumétrica (B) é independente do nível de tensões (σ_1 - σ_3) e que este varia com a tensão confinante, acarreta em uma aproximação razoável para representar a forma dessas mudanças de variação de volume. Com esta hipótese torna-se possível usar as ferramentas da teoria da elasticidade, já que esta pressupõe a independência de B e (σ_1 - σ_3).

O cálculo de B pode ser feito para um determinado valor de ($\sigma_1 - \sigma_3$), conforme mostra a Figura 9 (vide pontos A e A'). Na pratica, as variações de volume são devidas não só a variações nas tensões cisalhantes, mas também devido a variações na tensão normal. Com isso, os valores de B mudam dependendo do ponto considerado. Após a análise de diferentes solos, recomenda-se que:

i) se a curva de variação de volume não atinge uma tangente horizontal antes de se mobilizar 70% da resistência, calcular B no ponto correspondente a 70% (σ_1 - σ_3)_f.

 ii) se a curva de variação de volume atinge uma tangente horizontal antes de se mobilizar
 70% da resistência, usar o ponto na curva de variação de volume em que a curva torna-se horizontal.

Figura 9. Variação de volume no cisalhamento

Os módulos de variação volumétrica devem ser calculados para diferentes níveis de tensão confinante. Em geral B cresce com a tensão confinante. A consideração do efeito da tensão confinante pode ser feita plotando-se os resultados, conforme mostra a Figura 10. A equação

$$B = K_b Pa \left(\frac{\sigma_3}{Pa}\right)^m$$

introduz os parâmetros K_b e m. Para maioria do solos m varia entre 0 e 1. Valores negativos de m foram determinados em ensaios não drenados em argilas compactadas no ramo seco; fisicamente, este resultado significa a redução do valor de B com aumento da tensão confinante.

 $\log (\sigma_3/Pa)$

Figura 10. Variação do modulo volumétrico com a tensão confinante

É importante observar que quando o valor de B se aproxima de $E_t/3$, o valor do coeficiente de Poisson tende a zero. Por outro lado, se B é maior que $17E_t$ o coeficiente de Poisson se iguala a 0,5. Estes limites devem ser evitados; recomenda-se como regra pratica:

se
$$B < \frac{E_t}{3} \Rightarrow B = \frac{E_t}{3} \Leftrightarrow v = 0$$

se $B > 17E_t \Rightarrow B = 17E_t \Leftrightarrow v \approx 0.5$

1.1.5. Não linearidade da envoltória de ruptura

Alguns solos apresentam envoltórias que seriam melhor representadas por curvas. Em solos não coesivos (areias, pedregulhos) esta curvatura torna difícil o estabelecimento de um único valor de ângulo de atrito que seja representativo de um determinado nível de tensões (Figura 11).

Por exemplo, sob o eixo de simetria de barragens de grande altura, as altas tensões confinantes podem estar associadas a valores reduzidos de ângulo de atrito, se comparado com o comportamento próximo a superfície, acarretando em uma dúvida na definição de do valor apropriado de ϕ '.

Figura 11. Variação de 6. com o nível de confinamento

Esta dificuldade pode ser minimizada considerando-se a variação de ϕ ' com a tensão confinante. Como mostra a Figura 12, cada ensaio triaxial pode fornecer um determinado valor de ϕ ', calculado a partir de

$$\phi' = sen^{-1} \left(\frac{\sigma_1 - \sigma_3}{\sigma_1 + \sigma_3} \right)$$

Quando isso é feito, verifica-se uma redução de ¢'.com o nível de confinamento. Esta variação pode ser representada pela equação:

$$\phi = \phi_o - \Delta \phi \log_{10} \left(\frac{\sigma_3}{Pa} \right)$$

onde ϕ_0 = ângulo de atrito para σ_3 = Pa e $\Delta \phi$ = a redução deste ângulo para um aumento de 10 vezes de σ_3

Figura 12. Variação do ângulo de atrito com a tensão confinante

1.1.6. Comentários finais

A Tabela 3 resume os parâmetros necessários para aplicação do modelo hiperbólico

Parâmetro	Função				
K, K _{ur}	Relaciona $E_i e E_{ur} com \sigma_3$				
n					
С	Relaciona (σ_1 - σ_3) _f com σ_3				
φο, $Δ$ $φ$	Variação do ângulo de atrito				
D.	Razão de ruptura: relaciona (σ_1 - σ_3) _{ult} com (σ_1 - σ_3) _f -				
IX _f	Tipicamente entre 0,7 e 0,95				
K _b	Valor de B / Pa para σ_3 = Pa				
m	Tipicamente entre 0 e 1,0				

Tabela 3. Parâmetros do modelo hiperbólico.

As principais vantagens do modelo hiperbólico são

Os parâmetros podem ser determinados a partir de ensaios triaxiais convencionais. Na falta destes ensaios, os parâmetros podem ser estimados com base em ensaios de cisalhamento direto e adensamento.

Os parâmetros do modelo têm significado físico.

Pode-se usar a mesma relação, tanto para análise em termos de tensões efetivas (ensaio drenado) ou tensões totais (ensaio UU, não consolidado, não drenado). Em ensaios não drenados, recomenda-se analisar tensões totais (v = 0,5)

Os valores dos parâmetros podem ser calculados para diferentes tipos de solos e podem ser utilizados para estimar, razoavelmente, os valores no caso onde os dados existentes são insuficientes para a definição de todos os parâmetros envolvidos no problema em questão. A

Tabela 4 apresenta alguns valores típicos dos parâmetros hiperbólicos para diferentes tipos de solos.

Sistema	γm	φ'₀ (°)	Δφ' (°)	c' (kPa)	К	n	R _f	K _b	m
unificado	(kN /m³)								
GW, GP	23,80	42	9	0	600	0,4	0,7	175	0,2
SW, SP	23,00	39	7	0	450	0,4	0,7	125	0,2
	22,22	36	5	0	300	0,4	0,7	75	0,2
	21,42	33	3	0	200	0,4	0,7	50	0,2
SM	21,42	36	8	0	600	0,25	0,7	450	0,0
	20,63	34	6	0	450	0,25	0,7	350	0,0
	19,84	32	4	0	300	0,25	0,7	250	0,0
	19,05	30	2	0	150	0,25	0,7	150	0,0
SM - SC	21,42	33	0	23,92	400	0,6	0,7	200	0,5
	20,63	33	0	19,14	200	0,6	0,7	100	0,5
	19,84	33	0	14,35	150	0,6	0,7	75	0,5
	19,05	33	0	9,57	100	0,6	0,7	50	0,5
CL	21,42	30	0	19,14	150	0,45	0,7	140	0,2
	20,63	30	0	14,35	120	0,45	0,7	110	0,2
	19,84	30	0	9,57	90	0,45	0,7	80	0,2
	19,05	30	0	4,78	60	0,45	0,7	50	0,2

Tabela 4. Valores típicos dos parâmetros hiperbólicos para diferentes tipos de solos.

As limitações do modelo são:

Sendo baseada na Lei de Hooke generalizada, a relação é mais adequada para a análise de tensões e movimentos antes da ruptura, na região em que o comportamento do solo é mais linear

O modelo não inclui variações volumétricas devido a variações nas tensões cisalhantes; isto é, não é capaz de simular dilatância (solos densos)

Os parâmetros não são propriedades fundamentais dos solos, mas apenas coeficientes empíricos que representam o comportamento do solo para certas condições. Os valores dos parâmetros dependem da densidade do solo, do conteúdo de água nos vazios e dos valores de tensão e condições de drenagem usados nos ensaios.

Não simula trajetória de tensão, isto é não considera σ_2 .

1.1.7. Exemplo de utilização do modelo hiperbólico

1.1.7.1. Definição de c e ϕ

Result		
ados		
а	С	0,2
(kgf/cm²) =	$0,18(kgf/cm^2) = 3$	
	31,1	
α = °	$\phi =$	37°

1.1.7.2. Cálculo de K_h e n

ensaio	σ_3 (kgf/cm ²)	а	E _i (kgf/cm²)	b	$\Box \sigma - \Box \Box \sigma_3 \Box$ ult	R _f
1	1	0.0019	526	0.0020	5	0.76
2	2	0.0013	769	0.0012	8	0.86
3	4	0.0012	833	0.0006	17	0.78

Faculdade de Engenharia Departamento de Estruturas e Fundações

1.1.7.3. Cálculo de k_b e m

Como a curva de variação de volume não atingiu a tangente horizontal para valores inferiores à 70% da resistência mobilizada, os valores adotados para tensão desviadora e variação volumétrica estão relacionados na tabela abaixo e correspondem aos valores de 70% da resistência mobilizada.

ensaio	σ_3 (kgf/cm ²)	B _{70%}
1	1	176
2	2	180
3	4	309

Resultados:

Kb =	159
m =	0.480

A seguir estão plotadas as curvas tensão x deformação e as curvas de variação volumétrica obtidas em ensaio triaxial CTC e as respectivas curvas recuperadas com o modelo hiperbólico. Ressalta-se que o comportamento não foi satisfatoriamente representado, sendo essa uma das grandes limitações do modelo. Este problema deve-se ao fato do modelo considerar o coeficiente de Poisson constante durante todo o ensaio.

Faculdade de Engenharia Departamento de Estruturas e Fundações

